Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22040283-5    https://doi.org/10.11896/cldb.22040283
  高分子与聚合物基复合材料 |
手性氨基酸对手性碳酸钙生物矿物的诱导与调控
江文革1,*, 李晏安1, 邢一1, 李海宾1,2, 宋建伟1, 刘悦1
1 天津大学化学系,天津市化学科学与工程协同创新中心,天津市分子光电科学重点实验室,天津 300072
2 青海民族大学化学化工学院,国家民委青藏高原资源化学与生态环境保护重点实验室,西宁 810007
Induction and Regulation of Chiral Calcium Carbonate Biominerals by Chiral Amino Acids
JIANG Wenge1,*, LI Yan’an1, XING Yi1, LI Haibin1,2, SONG Jianwei1, LIU Yue1
1 Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Department of Chemistry,Tianjin University, Tianjin 300072, China
2 Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
下载:  全 文 ( PDF ) ( 13340KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 手性生物矿物广泛存在于自然界中,在生命起源、生物进化、病理学和材料学研究中都扮演着重要的角色。因此,对手性生物矿物产生机制的探究逐渐成为现代热点研究领域。在生物矿化过程中,手性矿化蛋白质分子通过其手性氨基酸残基来实现对生物矿物的调控。本工作从构成手性矿化蛋白质的酸性氨基酸(L-天冬氨酸)、中性氨基酸(L-丙氨酸)和碱性氨基酸(L-赖氨酸)出发,仿生模拟碳酸钙生物矿物生长的手性环境,诱导合成了手性碳酸钙(球霰石)生物矿物。通过光学显微镜、扫描电子显微镜和X射线衍射等表征手段,揭示了各种手性氨基酸在手性碳酸钙的形成过程中所起的作用:酸性氨基酸分子负责球霰石手性结构的调控,碱性氨基酸和中性氨基酸主要负责诱导产生球霰石物相。本研究为手性生物矿物的产生过程构建了新的理论模型,以期促进手性生物材料的合成与发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江文革
李晏安
邢一
李海宾
宋建伟
刘悦
关键词:  手性氨基酸  酸碱性  手性诱导  球霰石  生物矿化    
Abstract: Chiral biologic minerals, widely found in nature, play an important role in the origin of life, biological evolution, pathology and material science. Therefore, the exploration of the generation mechanism of biological minerals has gradually become a hot research field in modern times. In the process of biomineralization, related chiral protein molecules realize the regulation of biominerals through their chiral amino acid residues. In this work, starting from acidic, neutral and alkaline amino acids which constitute the chiral mineralized proteins, we simulated the chiral environment of the growth of biological calcium carbonate minerals to induce the synthesis of chiral calcium carbonate (vaterite) biological mine-rals. The effect of various chiral amino acids in the formation of chiral calcium carbonate was revealed by means of optical microscopy, scanning electron microscopy and X-ray diffraction. Acid amino acid molecules regulated the chiral structure of vaterite, while alkaline amino acid and neutral amino acid induced the formation of vaterite phase. This study establishes a new theoretical model for the production process of chiral biomaterials and will promote the synthesis and development of chiral biomaterials.
Key words:  chiral amino acids    acidic and alkaline    chiral induction    vaterite    biomineralization
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  O781  
基金资助: 国家自然科学基金(21975179)
通讯作者:  *wenge.jiang@tju.edu.cn   
引用本文:    
江文革, 李晏安, 邢一, 李海宾, 宋建伟, 刘悦. 手性氨基酸对手性碳酸钙生物矿物的诱导与调控[J]. 材料导报, 2023, 37(17): 22040283-5.
JIANG Wenge, LI Yan’an, XING Yi, LI Haibin, SONG Jianwei, LIU Yue. Induction and Regulation of Chiral Calcium Carbonate Biominerals by Chiral Amino Acids. Materials Reports, 2023, 37(17): 22040283-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040283  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22040283
1 Jiang W G, Pacella M S, Vali H, et al. Science Advances, 2018, 4, eaas9819.
2 DeYoreo J J, Gilbert P U P A, Sommerdijk N A J M, et al. Science, 2015, 349, aaa6760.
3 Grand C, Patel N H, Nature, 2009, 457, 1007.
4 Ueshima R, Asami T. Nature, 2003, 425, 679.
5 Schilthuizen M, Davison A. Naturwissenschaften, 2005, 92, 504.
6 Sutcharit C, Asami T, Panha S. Journal of Molecular Biology, 2007, 20, 661.
7 Bozzetti L. Bulletin of the Institute of Malacology, 1994, 3, 33.
8 Addadi L, Weiner S. Nature, 2001, 411, 753.
9 Jiang W G, Pacella M S, Athanasiadou D, et al. Nature Communications, 2017, 8, 15066.
10 Bandy O J. Journal of Paleontology, 1960, 34, 671.
11 Young J R, Henriksen K. Reviews in Mineralogy and Geochemistry, 2003, 54, 189.
12 Durak G M, Taylor A R, Walker C E. et al. Nature Communications, 2016, 7, 10543.
13 Jr Cohen M M. American Journal of Medical Genetics, 2012, 158A, 2981.
14 Tapanila L. Biology Letters, 2013, 9, 20130057.
15 Wright C G. American Journal of Otolaryngology, 1982, 3, 196.
16 Addadi L, Weiner L S. Nature, 2001, 411, 753.
17 Brown P R. Journal of Nannoplankton Research, 2010, 31, 11.
18 Morrow S M, Bissette A J, Nature Nanotechnology, 2017, 12, 410.
19 Jiang W G, Pan H H, Zhang Z S, et al. Journal of the American Chemical Society, 2017, 139, 8562.
20 Jiang W G, Yi Xing, McKee M D. Materials Horizons, 2019, 6, 1974.
21 Grand C, Patel N H. Nature, 2009, 457, 1007.
22 Jiang W G, Dimitra A, Zhang S D, et al. Nature Communications, 2019, 10, 2318.
23 Cheng X H, Qu S H, Zhong Z C. Materials Reports, 2018, 32(14), 2486(in Chinese).
程晓红, 屈少华, 钟志成. 材料导报, 2018, 32(14), 2486.
24 Yang F P, Song Z Y, Yin L C, et al. Materials Reports, 2022, 36(3), 21080287(in Chinese).
杨方平, 宋子元, 殷黎晨, 等. 材料导报, 2022, 36(3), 21080287.
[1] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[2] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[3] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[4] 陈世尧, 袁光明, 杨涛, 夏名出, 牟明明. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182-10186.
[5] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[6] 陈玲, 赵倩, 汪洋, 柴牧原, 徐志勇, 赵文波. 离子液体中阴阳离子的特性对其吸收二氧化硫的影响[J]. 材料导报, 2018, 32(17): 2949-2958.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed