Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2949-2958    https://doi.org/10.11896/j.issn.1005-023X.2018.17.008
  无机非金属及其复合材料 |
离子液体中阴阳离子的特性对其吸收二氧化硫的影响
陈玲, 赵倩, 汪洋, 柴牧原, 徐志勇, 赵文波
昆明理工大学化学工程学院,昆明 650500
Effect of Anionic and Cationic Characteristic on the SO2 Absorption Performance of Ionic Liquids
CHEN Ling, ZHAO Qian, WANG Yang, CHAI Muyuan, XU Zhiyong, ZHAO Wenbo
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SO2是一种无色、有强烈刺激性气味的气体,弥散在空气中的 SO2对人体健康、生态环境有着严重的危害,是导致空气质量不断恶化的主要大气污染物之一。人为造成的SO2污染物的主要来源有燃料燃烧、工业生产、交通运输等,其中燃料燃烧占70%。因此,削减和控制燃料燃烧所产生的 SO2的排放是我国能源利用和环保领域的重要研究方向,烟气脱硫是应对烟气中SO2排放的有效途径。
   湿法烟气脱硫是目前应用最广泛的方法,占世界安装烟气脱硫机组总容量的85%,采用该方法处理的烟气占总处理量的80%。在湿法烟气脱硫技术中比较实用的主要包括钙法脱硫、有机胺脱硫、海水脱硫。其中,钙法脱硫的脱硫效率高,对煤种的适应性较强,但是脱硫会产生CaSO4沉淀,降低经济效益;有机胺脱硫的系统腐蚀性小,副产品可生产硫酸,但是胺易挥发,造成吸收剂损失和环境污染;海水法脱硫的工艺简单、运行可靠,但其应用受到地域的影响,并且对环境也会产生一定的影响。
   离子液体是一种新兴的绿色介质,它具有环保、可再生、结构可调控的优点,为解决传统工艺中的污染问题提供了新方案。在离子液体吸收气体的过程中,吸收液不会因其挥发性而蒸发进入气相,并且可以在较低的温度下完成吸收解吸循环。离子液体的这些优良特性使其在SO2吸收方面有着极广阔的应用前景。目前,研究者们已合成了一系列胍盐类、咪唑类、醇胺类、吡啶类等离子液体,探究其吸收SO2的性能与机理,并根据其结构可设计的特点,在离子液体中的阴阳离子上引入各类官能团(如氰基、醚基、氨基、卤素),合成满足特定需求的离子液体,使其高效、可逆、低耗地吸收SO2
   本文总结了近年来各类离子液体吸收SO2的性能和机理,为系统地认识离子液体在SO2分离领域的应用提供了帮助;重点阐明了离子液体中阴阳离子的种类、官能化,尤其是酸碱性对其吸收SO2的影响,这为调整离子液体酸碱性、合理设计离子液体的结构,探索离子液体吸收SO2的机理,改善其对SO2的吸收性能有着重要的价值。最后指出了目前研究中存在的问题并且对未来新型离子液体的合成进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈玲
赵倩
汪洋
柴牧原
徐志勇
赵文波
关键词:  离子液体  吸收  二氧化硫  阴阳离子  种类  酸碱性  官能化    
Abstract: Sulfur dioxide (SO2) is a kind of colorless and intensely irritating gas. When dispersing in the air, SO2 will threaten the human health, do harm to the environment, and deteriorate air quality. The main sources of man-made SO2 pollution are fuel combustion, industrial production, transportation and so forth. Among them, fuel combustion accounts for 70%. Therefore, minimizing and controlling SO2 emission from fuel combustion are primary research directions in the field of energy utilization and environmental protection in China. Flue gas desulfurization (FGD) is considered as an effective way to remove SO2.
   Currently, the wet flue gas desulfurization is the most popular method for flue gas treatment. Wet flue gas desulfurization installation accounts for 85% of the total installed capacity of flue gas desulfurization units in the world, and the amount of flue gas treated by wet flue gas desulfurization accounts 80% of the total treatment capacity. There are mainly practical techniques for the wet flue gas desulfurization, including calcium, organic amine and seawater desulfurization. Among them, calcium desulfurization can remove SO2 efficiently and has strong adaptability to different kinds of coal. However, there are large amounts of by-product CaSO4 formed in the process, which leads to the low economic efficiency. The organic amine desulfurization is of less system corrosion, and the byproduct can be used to produce sulfuric acid, but the amine is volatile, resulting in loss of absorbent and second pollution. Seawater desulfurization is a simple and reliable method for SO2 removal, whereas its application is limited by the geographical location and has an adverse impact on environment.
   Ionic liquid (IL) is an emerging green medium with the advantages of environment protective, reproducible and structure tunable which provides a new method for solving the pollution problems of traditional processes. Especially, ILs have a promising application prospect in gas separation, because there is no weight loss for ILs during the absorption process and the cycle of gas absorption and desorption can be conducted at a lower temperature. This excellent SO2 absorption performance of ILs endows them with great potential for SO2 capture. Currently, researchers have synthesized a series guanidinium, imidazoles, alkanolamines and pyridine-based ILs, for SO2 absorption. The SO2 absorption performance and mechanism of ILs have been also explored. Based on the tunable structure, functional groups, such as cyano, ether, amino and halogen are introduced into the anion and cation of ILs to synthesized the ILs with specific ability, aiming at making desulfurization process efficient, reversible and energy-saving.
   In this article, the properties and mechanism of SO2 absorption by various types of ILs in recent years are reviewed, which provides a systematic understanding of the ILs application in the field of SO2 absorption. The effects of anion and cation species, functionalization, especially acidity and alkalinity on the absorption of SO2 in ILs are emphasized. It is of great value to adjust the acidity and basicity of ILs, to design the structure of ILs, to explore the mechanism of SO2 absorption by ILs, and to improve the absorption properties of SO2. Finally, the problems existing in the current research are pointed out and the prospects for the synthesis of new type ILs for SO2 absorption are also discussed.
Key words:  ionic liquid    absorption    SO2    anions and cations    type    acidity and alkalinity    functionalization
                    发布日期:  2018-09-19
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21306071;21666011);云南省自然科学基金(2014FB118)
作者简介:  陈玲:女,1994年生,硕士研究生,研究方向为二氧化硫气体的吸收及资源化 E-mail:1752432056@qq.com 赵文波:男,博士,副教授,研究方向为有机碳酸酯合成 E-mail:wenshuixing@126.com
引用本文:    
陈玲, 赵倩, 汪洋, 柴牧原, 徐志勇, 赵文波. 离子液体中阴阳离子的特性对其吸收二氧化硫的影响[J]. 材料导报, 2018, 32(17): 2949-2958.
CHEN Ling, ZHAO Qian, WANG Yang, CHAI Muyuan, XU Zhiyong, ZHAO Wenbo. Effect of Anionic and Cationic Characteristic on the SO2 Absorption Performance of Ionic Liquids. Materials Reports, 2018, 32(17): 2949-2958.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.008  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2949
1 Wasserscheid P,Welton T. Ionic liquids in synthesis[M].Germany: John Wiley & Sons,2008.
2 Parvulescu V I, Hardacre C. Catalysis in ionic liquids[J].Chemical Reviews,2007,107(6):2615.
3 Greaves T L, Drummond C J. Protic ionic liquids: Properties and applications[J].Chemical Reviews,2008,108(1):206.
4 Ramdin M, Chen Q, Balaji S P, et al. Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and selexol from monte carlo simulations[J].Journal of Computational Science,2016,15:74.
5 Huang K, Wu Y T, Hu X B. Effect of alkalinity on absorption capacity and selectivity of SO2 and H2S over CO2: Substituted benzoate-based ionic liquids as the study platform[J].Chemical Engineering Journal,2016,297:265.
6 Wu W, Han B, Gao H, et al. Desulfurization of flue gas: SO2 absorption by an ionic liquid[J].Angewandte Chemie,2004,43(18):2415.
7 Yuan X, Jiang Zhang, Xing M L. Hydroxyl ammonium ionic li-quids:Synthesis, properties, and solubility of SO2[J].Journal of Chemical & Engineering Data,2007,52(2):596.
8 Shiflett M B, Yokozeki A. Chemical absorption of sulfur dioxide in room-temperature ionic liquids[J].Industrial & Engineering Chemistry Research,2009,49(3):1370.
9 Yokozeki A, Shiflett M B, Junk C P, et al. Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids[J].The Journal of Physical Chemistry B,2008,112(51):16654.
10 Zeng S, He H, Gao H, et al. Improving SO2 capture by tuning functional groups on the cation of pyridinium-based ionic liquids[J].RSC Advances,2014,5(5):2470.
11 Hong S Y, Im J, Palgunadi J, et al. Ether-functionalized ionic liquids as highly efficient SO2 absorbents[J].Energy & Environmental Science,2011,4(5):1802.
12 Cui G, Zheng J, Luo X, et al. Tuning anion-functionalized ionic li-quids for improved SO2 capture[J].Angewandte Chemie,2013,125(40):10814.
13 Tian S, Hou Y, Wu W, et al. Absorption of SO2 at high temperatures by ionic liquids and the absorption mechanism[J].Bulletin-Korean Chemical Society,2014,35(9):2791.
14 Qian J, Ren S, Tian S, et al. Highly efficient and reversible absorption of SO2 by aqueous triethylenetetramine tetralactate solutions[J].Industrial & Engineering Chemistry Research,2014,53(39):15207.
15 Zhao J, Ren S, Hou Y, et al. SO2 absorption by carboxylate anion-based task-specific ionic liquids: Effect of solvents and mechanism[J].Industrial & Engineering Chemistry Research,2016,55(50):12919.
16 Mondal A, Balasubramanian S. Understanding SO2 capture by ionic liquids[J].The Journal of Physical Chemistry B,2016,120(19):4457.
17 Ren S, Hou Y, Tian S, et al. Deactivation and regeneration of an ionic liquid during desulfurization of simulated flue gas[J].Industrial & Engineering Chemistry Research,2014,51(8):3425.
18 Huang J, Riisager A, Wasserscheid P, et al. Reversible physical absorption of SO2 by ionic liquids[J].Chemical Communications,2006,38(38):4027.
19 Huang J, Riisager A, Berg R W, et al. Tuning ionic liquids for high gas solubility and reversible gas sorption[J].Journal of Molecular Catalysis A Chemical,2008,279(2):170.
20 Wu L, An D, Dong J, et al. Preparation and SO2 absorption/desorption properties of crosslinked poly(1,1,3,3-tetramethylguanidine acrylate) porous particles[J].Macromolecular Rapid Communications,2006,27(22):1949.
21 Lu X, Yu J, Wu J, et al. Novel guanidinium-based ionic liquids for highly efficient SO2 capture[J].The Journal of Physical Chemistry B,2015,119(25):8054.
22 Zhai L Z, Zhong Q, Du H C, et al. Hydroxyl ammonium ionic li-quids: Synthesis and flue gas desulfurization[J].CIESC Journal,2009,60(2):450(in Chinese).
翟林智,钟秦,杜红彩,等.醇胺类离子液体合成及其烟气脱硫特性[J].化工学报,2009,60(2):450.
23 Anderson J L, Dixon J K, Maginn E J, et al. Measurement of SO2 solubility in ionic liquids[J].Journal of Physical Chemistry B,2006,110(31):15059.
24 Ando R A,Siqueira L J, Bazito F C, et al. The sulfur dioxide-1-butyl-3-methylimidazolium bromide interaction: Drastic changes in structural and physical properties[J].Journal of Physical Chemistry B,2007,111(30):8717.
25 Yokozeki A, Shiflett M B. Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid[hmim][Tf2N][J].Energy & Fuels,2009,23(9):4701.
26 Shiflett M B, Yokozeki A. Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid[bmim][MeSO4][J].Energy & Fuels,2010,24(2):1001.
27 Shannon M S, Irvin A C, Liu H, et al. Chemical and physical absorption of SO2 by N-functionalized imidazoles: Experimental results and molecular-level insight[J].Industrial & Engineering Chemistry Research,2014,54(1):462.
28 Guo B, Duan E, Ren A, et al. Solubility of SO2 in caprolactam tetrabutyl ammonium bromide ionic liquids[J].Journal of Chemical & Engineering Data,2009,55(3):1398.
29 Duan E, Guo B, Zhang M, et al. Efficient capture of SO2, by a binary mixture of caprolactam tetrabutyl ammonium bromide ionic liquid and water[J].Journal of Hazardous Materials,2011,194(194):48.
30 Tian S, Hou Y, Wu W, et al. Absorption of SO2 by thermal-stable functional ionic liquids with lactate anion[J].RSC Advances,2013,3(11):3572.
31 Anderson J L, Dixon J N K, Brennecke J F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium bis (trifluoromethylsulfonyl) imide: Comparison to other ionic liquids[J].Accounts of Chemical Research,2007,40(11):1208.
32 Mahurin S M, Lee J S, Baker G A, et al. Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation[J].Journal of Membrane Science,2010,353(1):177.
33 Yuan X, Zhang S, Chen Y, et al. Solubilities of gases in 1, 1, 3, 3-tetramethylguanidium lactate at elevated pressures[J].Journal of Chemical & Engineering Data,2006,51(2):645.
34 Mohammadi M, Foroutan M. Molecular investigation of SO2 gas absorption by ionic liquids: Effects of anion type[J].Journal of Molecular Liquids,2014,193(193):60.
35 Shang Y, Li H, Zhang S, et al. Guanidinium-based ionic liquids for sulfur dioxide sorption[J].Chemical Engineering Journal,2011,175(1):324.
36 Zeng S, Gao H, Zhang X, et al. Efficient and reversible capture of SO2, by pyridinium-based ionic liquids[J].Chemical Engineering Journal,2014,251(1):248.
37 Prasad B R, Senapati S. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations[J].The Journal of Physical Chemistry B,2009,113(14):4739.
38 Yuan X, Zhang S, Liu J, et al. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures[J].Fluid Phase Equilibria,2007,257(2):195.
39 Han Zhifei, Qin Yulan. The research progress of SO2 absorption by task-specific ionic liquid[J].Chemical Production and Technology,2009,16(5):29(in Chinese).
韩志飞,芮玉兰.功能化离子液体吸收SO2研究进展[J].化工生产与技术,2009,16(5):29.
40 He Chuan, Zhong Qin, Du Hongcai, et al. Microwave synthesis of hydroxyl ammonium ionic liquids and SO2 absorption[J].Chemical Engineering,2009,37(2):8(in Chinese).
何川,钟秦,杜红彩,等.微波法合成醇胺类离子液体及其吸收SO2研究[J].化学工程,2009,37(2):8.
41 Ren S, Hou Y, Tian S, et al. What are functional ionic liquids for the absorption of acidic gases?[J].Journal of Physical Chemistry B,2013,117(8):2482.
42 Ren S, Hou Y, Wu W, et al. Properties of ionic liquids absorbing SO2 and the mechanism of the absorption[J].Journal of Physical Chemistry B,2010,114(6):2175.
43 Wang C, Luo H, Jiang D, et al. Carbon dioxide capture by superbase-derived protic ionic liquids[J].Angewandte Chemie,2010,122(34):6114.
44 Chen K, Lin W, Yu X, et al. Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas[J].Aiche Journal,2015,61(6):2028.
45 Cui G, Lin W, Ding F, et al. Highly efficient SO2 capture by phenyl-containing azole-based ionic liquids through multiple-site interactions[J].Green Chemistry,2014,16(3):1211.
46 Wang C, Luo H, Li H, et al. Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion[J].Chemistry—A European Journal,2012,18(7):2153.
47 Cui G, Zhang F, Zhou X, et al. Tuning the basicity of cyano-containing ionic liquids to improve SO2 capture through cyano-sulfur inte-ractions[J].Chemistry,2015,21(14):5632.
48 Steudel R, Steudel Y. Charge-transfer complexes between the sulfur molecules SO2, S2O, S3, SONH, and SOCl2 and the amine donors NH3 and NMe3—A theoretical study[J].European Journal of Inor-ganic Chemistry,2007,2007(27):4385.
49 Sun S, Niu Y, Xu Q, et al. Highly efficient sulfur dioxide capture by glyme-lithium salt ionic liquids[J].RSC Advances,2015,5:46564.
50 Bruce D W, Metrangolo P, Meyer F, et al. Structure-function relationships in liquid-crystalline halo-gen-bonded complexes[J].Che-mistry—A European Journal,2010,16(31):9511.
51 Gurkan B, Goodrich B F, Mindrup E M, et al. Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture[J].The Journal of Physical Chemistry Letters,2010,1(24):3494.
52 Cui G, Wang C, Zheng J, et al. Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption[J].Chemical Communications,2012,48(20):2633.
53 Wang C, Cui G, Luo X, et al. Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption[J].Journal of the American Chemical Society,2011,133(31):11916.
54 Sayari A, Belmabkhout Y. Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor[J].Journal of the American Chemical Society,2010,132(18):6312.
55 Teague C M, Dai S, Jiang D. Computational investigation of reactive to nonreactive capture of carbon dioxide by oxygen-containing Lewis bases[J].The Journal of Physical Chemistry A,2010,114(43):11761.56 Berg R W, Riisager A, Buu O N V, et al. X-ray crystal structure, raman spectroscopy, and ab initio density functional theory calculations on 1,1,3,3-tetramethylguanidinium bromide[J].Journal of Physical Chemistry A,2010,114(50):13175.
57 Kohler F, Roth D, Kuhlmann E, et al. Continuous gas-phase desulfurisation using supported ionic liquid phase (SILP) materials[J].Green Chemistry,2010,12(6):979.
58 Cui G, Huang Y, Zhang R, et al. Highly efficient and reversible SO2 capture by halogenated carboxylate ionic liquids[J].RSC Advances,2015,5(75):60975.
59 Huang K, Wang G N, Dai Y, et al. Dicarboxylic acid salts as task-specific ionic liquids for reversible absorption of SO2 with a low enthalpy change[J].RSC Advances,2013,3(37):16264.
60 Metrangolo P, Pilati T, Resnati G. Halogen bonding and other noncovalent interactions involving halogens: A terminology issue[J].CrystEngComm,2006,8(12):946.
61 Yang D, Hou M, Ning H, et al. Reversible capture of SO2 through functionalized ionic liquids[J].ChemSusChem,2013,6(7):1191.
62 Du D, Fu A, Qin M, et al. π-Hole interaction: A theoretical insight into the mechanism of SO2 cap-tured by[Et2NEMim][Tetz] ionic liquids[J].Journal of Molecular Modeling,2015,21(8):210.
63 Ren S, Hou Y, Wu W, et al. Effect of H2O on the desulfurization of simulated flue gas by an ionic liquid[J].Industrial & Engineering Chemistry Research,2009,48(10):4928.
64 Hansen B B, Kiil S, Johnsson J E, et al. Foaming in wet flue gas desulfurization plants: The influence of particles, electrolytes, and buffers[J].Industrial & Engineering Chemistry Research,2008,47(9):3239.
65 Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids[J].Pure and Applied Chemistry,2000,72(12):2275.
66 Lee K Y, Kim H S, Kim C S, et al. Behaviors of SO2 absorption in[BMIm][OAc] as an absorbent to recover SO2 in thermochemical processes to produce hydrogen[J].International Journal of Hydrogen Energy,2010,35(19):10173.
67 Zhai L, Zhong Q, He C, et al. Hydroxyl ammonium ionic liquids synthesized by water-bath microwave: Synthesis and desulfurization[J].Journal of Hazardous Materials,2010,177(1):807.
68 Meng X, Wang J, Jiang H, et al. 2-Ethyl-4-methylimidazolium ala-ninate ionic liquid: Properties and mechanism of SO2 absorption[J].Energy & Fuels,2017,31(3):2996.
69 Cui G, Zhang F, Zhou X, et al. Acylamido-based anion-functiona-lized ionic liquids for efficient SO2 capture through multiple-site interactions[J].ACS Sustainable Chemistry & Engineering,2015,3(9):2264.
70 Yang B, Zhang Q, Fei Y, et al. Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO2 absorption[J].Green Chemistry,2015,17(7):3798.
71 Leiūnaite J, Kčimenkovs I, Kviesis J, et al. Liquid chromatography and characterization of ether-functionalized imidazolium ionic liquids on mixed-mode reversed-phase/cation exchange stationary phase[J].Comptes Rendus Chimie,2010,13(10):1335.
[1] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[2] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[3] 廖明义, 宋雅婷. 阴离子合成POSS端基官能化聚丁二烯与白炭黑相互作用[J]. 材料导报, 2019, 33(2): 352-356.
[4] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[5] 王倩, 谢海波. DBU/DMSO/CO2溶剂体系中纤维素聚离子液体的合成及性质[J]. 材料导报, 2019, 33(10): 1768-1772.
[6] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[7] 李文龙, 薛屏. 微生物燃料电池分隔材料的研究新进展[J]. 《材料导报》期刊社, 2018, 32(7): 1065-1072.
[8] 李博, 徐晓婷, 郑雪晴. 离子液体在有机光电转换器件中的应用研究进展[J]. 材料导报, 2018, 32(23): 4116-4124.
[9] 卞洁鹏,杨庆浩. 离子液体的合成与纯化方法研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1813-1819.
[10] 李迎春, 贺茂勇. 噁唑啉官能化R-ABS对废旧HIPS和ABS共混性能的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 125-129.
[11] 牛荻涛, 吕瑶, 刘西光. 混凝土硫化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(23): 163-170.
[12] 刘娜, 孙鑫, 宁平, 李凯, 孙丽娜. 新型矿浆材料脱硫现状及研究进展[J]. 《材料导报》期刊社, 2017, 31(17): 106-111.
[13] 王奕仁, 王栋民. 骨料种类与品质对透水混凝土性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 98-105.
[14] 苗青, 曲建波, 张斐斐, 田荟琳, 张海涛. 可控活性自由基聚合制备端基官能化聚合物研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 101-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed