Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1030-1035    https://doi.org/10.11896/cldb.20040051
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用? |
微生物矿化沉积技术强化核壳结构再生粗骨料
谢登敏1,2, 钱春香1,2, 张霄1,2
1 东南大学材料科学与工程学院,南京 211189
2 东南大学绿色建材研究中心,南京 211189
Microbially Induced Calcium Carbonate Precipitation Strengthening Recycled Coarse Aggregate with Core-shell Structure
XIE Dengmin1,2, QIAN Chunxiang1,2, ZHANG Xiao1,2
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Research Center of Green Building and Construction Materials, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 6732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实现废弃混凝土砂粉的高效利用,以废弃砂为内核,废弃粉及少量胶凝材料为壳层原料,采用冷粘成球技术制备核壳结构再生粗骨料,并利用微生物矿化沉积碳酸钙(MICP)提升骨料品质,本工作研究了矿化时间、钙离子浓度对内核质量增加率、吸水率的影响,及微生物矿化剂对再生粗骨料性能的提升效果,通过SEM、TG-DTG分析再生粗骨料内核及表面形貌、物相含量。结果表明,矿化微生物可加速、诱导碳酸钙沉积,密实结构,显著提升再生粗骨料品质;当微生物矿化剂掺量为1.0%(质量分数)时,再生粗骨料压碎指标、吸水率、微粉含量、质量损失率分别降低50.0%、21.2%、50.0%、15.3%,表观密度增加2.8%,壳层氢氧化钙完全矿化,碳酸钙含量增至24.18%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢登敏
钱春香
张霄
关键词:  废弃砂粉  微生物矿化  冷粘成球  核壳结构  再生粗骨料    
Abstract: In order to achieve the efficient utilization of waste concrete sand and powder, using waste sand as the core, waste powder and a small amount of cementing material as the shell material, cold-bonding technology is used to prepare recycled coarse aggregates with core-shell structure, and microbially induced calcium carbonate precipitation (MICP) is integrated with the purpose of strength enhancement. This paper studies the effects of mineralization time, calcium ion concentration on the core mass gain and water absorption, the amount of cementitious material on the granulation rate, and the content of microbial mineralizer on the properties of recycled coarse aggregate, SEM and TG-DTG were used to analyze the morphology and phase content of recycled coarse aggregate. Experimental results indicate that mineralized microorganisms can accelerate and induce calcium carbonate deposition, and significantly improve the quality of recycled coarse aggregates. When the content of microbial mineralizer is 1.0%, the crushing index of recycled coarse aggregates, water absorption, content of fine powder and soundness decreased by 50.0%, 21.2%, 50.0%, and 15.3%, and the apparent density increased by 2.8%, the shell calcium hydroxide was completely mineralized, and the calcium carbonate content increased to 24.18%.
Key words:  waste sand powder    microbial mineralization    cold-bonding palletization    core-shell structure    recycled coarse aggregate
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TU526  
基金资助: 基金项目:国家自然科学基金(5173000002)
作者简介:  谢登敏,东南大学材料科学与工程学院,硕士研究生,主要从事固体废弃物资源化利用研究。
张霄,东南大学材料科学与工程学院,博士研究生,主要从事固体废弃物处理与资源化利用,水泥基快速修复材料研究。发表SIC论文3篇,专利1项。
钱春香,国务院政府特殊津贴专家、江苏省特聘教授、东南大学特聘教授、东南大学绿色建材研究所所长。1992年南京化工学院博士毕业(师从唐明述院士),之后进入东南大学工作,主要从事高性能混凝土与微生物智能混凝土,微生物水泥与其他低碳胶凝材料和绿色节能建筑材料研究。拥有发明专利30多项,出版专著6部,发表学术论文210余篇。
引用本文:    
谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
XIE Dengmin, QIAN Chunxiang, ZHANG Xiao. Microbially Induced Calcium Carbonate Precipitation Strengthening Recycled Coarse Aggregate with Core-shell Structure. Materials Reports, 2021, 35(1): 1030-1035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040051  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1030
1 Thomas J, Harilal B. Cement and Concrete Composites,2015,62,67.
2 Kockal N U, Ozturan T. Journal of Hazardous Materials,2010,179(1-3),954.
3 Jiang Y, Ling T C. Journal of CO2 Utilization,2020,36,135.
4 Tang P, Brouwers H J H. Waste Management,2017,62,125.
5 Azrar H, Zentar R, Abriak N E. Procedia Engineering,2016,143,10.
6 Colangelo F, Messina F, Cioffi R. Journal of Hazardous Materials,2015,299(15),181.
7 Tang P, Xuan D, Cheng H W. Journal of Hazard Materials,2020,381,120951.
8 Mondal S, Ghosh A D. Construction and Building Materials,2019,225,67.
9 Mujah D, Shahin M A, Cheng L. Geomicrobiology,2016,34(6),524.
10 Yu X, Jiang J. Ecotoxicology and Environmental Safety,2020,191,110224.
11 Singh L P, Bisht V, Aswathy M S. Construction and Building Materials,2018,181,217.
12 Chen F, Wu C R, Wang X R. Theortical Research in Urban Constrution,2018,263(17),91(in Chinese).
陈飞,吴春然,王祥瑞.城市建设理论研究,2018,263(17),91.
13 Wu C R, Zhu Y G, Zhang X T, et al. Cement and Concrete Composites,2018,94,248.
14 Zhu Y G, Wu C R, Wu Y K. Concrete,2018,345(7),88(in Chinese).
朱亚光,吴春然,吴延凯.混凝土,2018,345(7),88.
15 Khushnood R A, Qureshi Z A, Shaheen N, et al. Science of the Total Environment,2020,703,135007.
16 Wang J, Vandevyvere B, Vanhessche S, et al. Journal of Cleaner Production,2017,156,355.
17 Borges P H R, Costa J O, Milestone N B, et al. Cement and Concrete Research,2010,40(2),284.
18 Shi M, Ling T C, Gan B. Construction and Building Materials,2019,199,178.
19 Gunning P J, Hills C D, Carey P J. et al. Waste Management,2009,29(10),2722.
[1] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[2] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[3] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[4] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[5] 杨亚文, 王娜, 任俊芳, 高贵, 陈生圣, 王宏刚. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19): 3242-3250.
[6] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[7] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[8] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[9] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[10] 蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
[11] 李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed