Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1036-1045    https://doi.org/10.11896/cldb.19110135
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用? |
自润滑关节轴承寿命试验及损伤失效机理研究现状
刘云帆1,2, 秦红玲1, 韩翠红2,3, 石佳东2,3, 马国政2, 王海斗2
1 三峡大学机械与动力学院,宜昌 443000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 河北工业大学材料科学与工程学院,天津 300000
Research Status of Life Test and Damage Failure Mechanism of Self-lubricating Spherical Plain Bearings
LIU Yunfan1,2, QIN Hongling1, HAN Cuihong2,3, SHI Jiadong2,3, MA Guozheng2, WANG Haidou2
1 College of Mechanical & Power Engineering, China Three Gorges University, Yichang 443000, China
2 National Key Laboratory for Remanufacturing, Army Armored Academy, Beijing 100072, China
3 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300000, China
下载:  全 文 ( PDF ) ( 14042KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自润滑关节轴承具有结构简单紧凑、免维护、无需添加润滑剂等诸多优点,现已成为航空航天装备和工业设备中广泛应用的一种重要基础运动部件。目前,包括美、法、德、英等在内的多个航空航天工业发达国家很早就对自润滑关节轴承进行了全面的研究工作,并形成了完整的关节轴承标准体系。而国内对自润滑关节轴承的研究起步晚,自润滑关节轴承在高精尖工业领域中的应用研究技术趋近于空白,尤其是在关节轴承的服役寿命预测和失效机理探究等基础性研究上十分薄弱。
   近年来,随着高精尖领域对自润滑关节轴承服役性能及寿命的要求不断提高,自润滑关节轴承寿命演变规律及其损伤失效机理的研究受到高度重视。研究人员发现自润滑衬垫/涂层的磨损失效是引起自润滑关节轴承失效的最主要原因,在服役过程中经常面临着重载、高频、高低温循环、强氧化、强辐射等异常恶劣的工况,其损伤失效机理是否发生了改变以及如何改进轴承寿命预测模型以提高寿命预测的精度成了当今的研究热点。
   目前,相关研究人员分别以摆动频率和载荷为加速应力设计了加速寿命试验,提升了自润滑关节轴承寿命试验效率,并且以Weibull分布中的参数变化作为判定关节轴承失效机理变化的依据,极大地加强了关节轴承寿命预测模型的准确性。同时,国内外学者针对衬垫型和部分涂层型自润滑关节轴承的失效机理展开了研究,揭示了衬垫型自润滑关节轴承摩擦副表面在不同工况下的成膜机理和磨损失效机理,并且发现利用超声波、化学溶液等表面改性方法能够在一定程度上改进衬垫的摩擦学性能,提高其服役寿命。
   本文首先总结了自润滑关节轴承寿命试验的研究现状,主要对关节轴承寿命试验的设备、标准和方法展开论述。然后,重点分析了自润滑关节轴承损伤失效机理,其中对自润滑关节轴承的失效形式及失效判定准则进行了简要介绍,着重分析比较了自润滑材料性能、摩擦表面加工质量、服役工况等影响自润滑关节轴承损伤失效的主要因素。最后,对自润滑关节轴承寿命试验及失效机理的重点研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘云帆
秦红玲
韩翠红
石佳东
马国政
王海斗
关键词:  自润滑关节轴承  寿命试验  摩擦磨损  损伤失效    
Abstract: Self-lubricating spherical plain bearings have many advantages, such as simple and compact structure, maintenance-free, no need to add lubricant, etc., and have become an important basic moving part widely used in aerospace equipment and industrial equipment. At present, many developed countries in the aerospace industry including the United States, France, Germany, and Britain had conducted comprehensive research on self-lubricating spherical plain bearings for a long time, and formed a complete standard system of spherical plain bearings. However, the domestic research on self-lubricating spherical plain bearings started late, and the application research technology of self-lubricating spherical plain bearings in high-precision industrial fields was approaching a blank, especially in basic researches such as service life prediction and failure mechanism exploration of spherical plain bearings were very weak.
In recent years, with the continuous improvement of the service performance and life of self-lubricating spherical plain bearings in the field of high-precision, the study on the evolution of the life of self-lubricating spherical plain bearings and the mechanism of damage failure had been highly valued. The researchers found that the wear failure of the self-lubricating liner/coating was the most important reason for the failure of the self-lubricating spherical plain bearings. Self-lubricating spherical plain bearings often faced unusually harsh working conditions such as heavy load, high frequency, high and low temperature cycles, strong oxidation, and strong radiation during service. Whether the damage failure mechanism had changed and how to improve the bearing life prediction model to improve the life prediction accuracy had become a research hotspot.
At present, relevant researchers had designed accelerated life tests using the swing frequency and load as the acceleration stress respectively, which had improved the efficiency of the self-lubricating spherical plain bearings, and the parameter change in the Weibull distribution was used as the basis for judging the change of the spherical plain bearings failure mechanism, which greatly enhanced the accuracy of the spherical plain bearings life prediction model. At the same time, the domestic and foreign scholars had conducted research on the failure mechanism of liner and part of coated self-lubricating spherical plain bearings, and revealed the film formation mechanism and wear failure mechanism of the surface of the friction pair of the liner self-lubricating spherical plain bearings under different working conditions. And found that the use of ultrasound, chemical solutions and other surface modification methods could improve the tribological properties of the pad to a certain extent, and increase its service life.
In this review, firstly, the current research status of self-lubricating spherical plain bearing life test was summarized, and the equipment, stan-dards and methods of spherical plain bearing life test were mainly discussed. Then, the failure mechanism of self-lubricating spherical plain bea-ring damage was analyzed. The failure mode and failure criterion of self-lubricating spherical plain bearings were briefly introduced. The main factors affecting the damage of self-lubricating spherical plain bearings were analyzed by comparing the performance of self-lubricating materials, the quality of friction surface processing and the service conditions. Finally, the key research directions of self-lubricating spherical plain bearing life test and failure mechanism were prospected.
Key words:  self-lubricating spherical plain bearings    life test    friction and wear    damage failure
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TH133.31  
基金资助: 国家自然科学基金(51905533);“十三五”装备预研项目(61409230603; 61409220205);装备预研教育部联合基金青年人才项目(6141A02033120)
作者简介:  刘云帆,2018年6月本科毕业于长春大学,获得工学学士学位。现为三峡大学机械与动力学院研究生,在秦红玲教授的指导下进行研究。目前主要研究领域为摩擦学及表面工程。
秦红玲,三峡大学机械与动力学院教师,硕士研究生导师,2001年6月毕业于武汉水利电力大学,获机械设计与制造专业工学学士学位。2004年6月毕业于三峡大学,获机械制造及其自动化专业硕士学位。2012年12月毕业于武汉理工大学,获载运工具运用工程专业博士学位。主要研究方向为:摩擦学及表面工程、振动与噪声控制。
马国政,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员、硕士研究生导师。2008 年本科毕业于西北工业大学,2010 年与2014 年在装甲兵工程学院装备再制造技术国防科技重点实验室分别获得硕士与博士学位。入选中国科协青年人才托举工程。现主要从事表面工程、再制造工程与摩擦学研究。
引用本文:    
刘云帆, 秦红玲, 韩翠红, 石佳东, 马国政, 王海斗. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
LIU Yunfan, QIN Hongling, HAN Cuihong, SHI Jiadong, MA Guozheng, WANG Haidou. Research Status of Life Test and Damage Failure Mechanism of Self-lubricating Spherical Plain Bearings. Materials Reports, 2021, 35(1): 1036-1045.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110135  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1036
1 Yang Y L, Zu D L, Huang S J. Bearing,2009(1),58(in Chinese).
杨育林,祖大磊,黄世军.轴承,2009(1),58.
2 Li J C, Zhu L N, Ma G Z, et al. Materials Reports A: Review Papers,2018,32(11),3796(in Chinese).
李俊超,朱丽娜,马国政,等.材料导报:综述篇,2018,32(11),3796.
3 Zhou J, Zhu H M, Zhou K. Bearing,2003(7),11(in Chinese).
周境,朱海明,周坤.轴承,2003(7),11.
4 Guo B X. China Standards Review,2003(7),44(in Chinese).
郭宝霞.中国标准导报,2003(7),44.
5 Zhang X P, Shang J Z, Chen X, et al. Journal of National University of Defense Technology,2013,35(6),53(in Chinese).
张详坡,尚建忠,陈循,等.国防科技大学学报,2013,35(6),53.
6 Bai Y X, Qiu M, Li Y C, et al. Modern Manufacturing Engineering,2012(4),138(in Chinese).
柏耀星,邱明,李迎春,等.现代制造工程,2012(4),138.
7 SKF Corporation. SKF spherical plain bearings and rod ends, Goteborg, Sweden,2011.
8 Schaeffler K G. INA spherical plain bearings, plain bushes, rod ends, catalogue 238, Herzogenaurach, Germany,2008.
9 NTN Corporation. NTN spherical plain bearings, CAT.NO.5301-/E,Osaka, Japan,2000.
10 FLURO Corporation. Rod ends and spherical plain bearings,FLURO Pro-duct Catalogue Edition 2008.
11 Xiang D H, Pan Q L, Yao Z J. Tribology,2003,23(1),72(in Chinese).
向定汉,潘青林,姚正军.摩擦学学报,2003,23(1),72.
12 Yang Y L, Fang X M, Wu F. Bearing,2015(12),38(in Chinese).
杨育林,房兴明,吴峰.轴承,2015(12),38.
13 Qiu M, Lyu G S, Zhan S H, et al. Acta Armamentarii,2013,34(6),754(in Chinese).
邱明,吕桂森,占松华,等.兵工学报,2013,34(6),754.
14 Yao S J, Qiu M, Zhang Y Z. Bearing,2008(11),38(in Chinese).
姚圣军,邱明,张永振.轴承,2008(11),38.
15 Qiu Y P, Shen X J. Bearing,2011(6),56(in Chinese).
邱月平,沈雪瑾.轴承,2011(6),56.
16 Hu Z Q, Li W, Yang Y L, et al. Bearing,2015(11),57(in Chinese).
胡占齐,李巍,杨育林,等.轴承,2015(11),57.
17 Shimizu T, Katsuma H, Ito S, et al. Self-lubricating spherical plain bea-ring for heavy duty application, NTN Toyo Bearing Co.,Ltd.,Toyo,1982.
18 Wang G F. Developing of a spherical plain bearings tester under combined swinging condition and experimental study. Master's Thesis, Henan University of Science and Technology, China,2011(in Chinese).
王国锋.复合摆动式关节轴承性能试验机的研制及试验研究.硕士学位论文,河南科技大学,2011.
19 Wei L B, Huang S J, Yang Y L. Helicopter Technique,2008(2),35(in Chinese).
魏立保,黄世军,杨育林.直升机技术,2008(2),35.
20 Song Y F, Guo Q, Luo W L. Physical Testing and Chemical Analysis Parta Physical Testing,2001(7),288(in Chinese).
宋云峰,郭强,罗唯力.理化检验(物理分册),2001(7),288.
21 Li W, Hu Z Q, Yang Y L, et al. China Mechanical Engineering,2016,27(6),742(in Chinese).
李巍,胡占齐,杨育林,等.中国机械工程,2016,27(6),742.
22 Yang K, Lin J. Aeronautic Standardization & Quality,2013(5),45(in Chinese).
杨昆,林晶.航空标准化与质量,2013(5),45.
23 Jing L L, Zhang Y, Sun Z Z. Aeronautic Standardization & Quality,2010(5),35(in Chinese).
景绿路,张艳,孙忠志.航空标准化与质量,2010(5),35.
24 SAE. AS 81820 Aerospace Standard in USA, USA: SAE International Group,2007.
25 SAE. AS 81819 Aerospace Standard in USA, USA: SAE International Group,1998.
26 Yu J W, Zheng S L, Feng J Z, et al. Journal of Mechanical Engineering,2016,52(22),112(in Chinese).
于佳伟,郑松林,冯金芝,等.机械工程学报,2016,52(22),112.
27 Li Y W, Lin J, Zhang L, et al. Bearing,2014(9),40(in Chinese).
李彦伟,林晶,张令,等.轴承,2014(9),40.
28 Niu R J, Zhang J H, Ni Y G, et al. In: Proceedings of the 2018 8th International Conference on Manufacturing Science and Engineering. Shen-zhen,2018.
29 Lu J J, Qiu M, Li Y C. Journal of Mechanical Transmission,2016,40(10),105(in Chinese).
卢建军,邱明,李迎春.机械传动,2016,40(10),105.
30 Qiu M, Zhou D W, Zhou Z S. Acta Armamentarii,2018,39(7),1429(in Chinese).
邱明,周大威,周占生.兵工学报,2018,39(7),1429.
31 Chen X, Tao J Y, Zhang C H. Journal of National University of Defense Technology,2002(4),29(in Chinese).
陈循,陶俊勇,张春华.国防科技大学学报,2002(4),29.
32 Lu J J. Study on failure mechanisms and life estimation methods of self-lubricating radial spherical plain bearings. Ph.D. Thesis, Northwestern Polytechnical University, China,2017(in Chinese).
卢建军.自润滑向心关节轴承失效机理及寿命评估方法研究.博士学位论文,西北工业大学,2017.
33 Wang Z. Contact performance analysis on self-lubricating spherical plain bearings. Master's Thesis, Yanshan University, China,2015(in Chinese).
王哲.自润滑关节轴承接触性能分析.硕士学位论文,燕山大学,2015.
34 Zeng K, Zhang S J, Chen X, et al. Failure Analysis and Prevention,2018,13(5),318(in Chinese).
曾坤,张韶佳,陈昕,等.失效分析与预防,2018,13(5),318.
35 Yuan Z J, Bao Y J, Duan H Y. Bearing,2018(11),48(in Chinese).
袁兆静,包雍杰,段宏瑜.轴承,2018(11),48.
36 Li S L, Yang B L, Zhang X L, et al. Aviation Maintenance & Enginee-ring,2018(12),46(in Chinese).
李士乐,杨宝林,张秀丽,等.航空维修与工程,2018(12),46.
37 Hu R S. Study on wear failure mechanism of rigid-flexible spherical plain bearings. Master's Thesis, Henan University of Science and Technology, China,2015(in Chinese).
胡仁松.刚柔球面接触副关节轴承的磨损失效机理研究.硕士学位论文,河南科技大学,2015.
38 Huang X R. Bearing,2018(7),48(in Chinese).
黄雄荣.轴承,2018(7),48.
39 Li Y C, Qiu M, Miao Y W, et al. Modern Manufacturing Engineering,2015(6),22(in Chinese).
李迎春,邱明,苗艳伟,等.现代制造工程,2015(6),22.
40 Xiang D H, Pan Q L, Luo X Y. Acta Materiae Compositae Sinica,2003(6),125(in Chinese).
向定汉,潘青林,骆心怡.复合材料学报,2003(6),125.
41 Qiu M, Zhou Z S, Zhou D W, et al. Tribology,2018,38(5),547(in Chinese).
邱明,周占生,周大威,等.摩擦学学报,2018,38(5),547.
42 Qiu M, Zhou D W, Pang X X. Acta Armamentarii,2017,38(9),1867(in Chinese).
邱明,周大威,庞晓旭.兵工学报,2017,38(9),1867.
43 Qiu M, Miao Y, Li Y, et al. Tribology International,2015,87,132.
44 Qiu M, Miao Y, Li Y, et al. Industrial Lubrication and Tribology,2016,68(3),308.
45 Qi X, Ma J, Jia Z, et al. Wear,2014,318,124.
46 Qiu M, Zhang R, Li Y C, et al. Industrial Lubrication and Tribology,2018,70(8),1422.
47 Donnet C. Surface and Coatings Technology,1998,100(1),180.
48 Donnet C, Fontaine J, Mogne L, et al. Surface and Coatings Technology,1999,120,548.
49 Donnet C, Fontaine J, Grill A , et al. Tribology Letters,2000,9(3),137.
50 Erdemir A, Donnet C. Journal of Physics D: Applied Physics,2006,39(18),311.
51 Erdemir A, Fontaine J, Donnet C. In: Tribology of Diamond-Like Carbon Films, Donnet C, Erdemir A, ed., Springer, Boston, MA. 2008, pp.237.
52 Ronkainen H, Holmberg K. In: Tribology of Diamond-Like Carbon Films, Donnet C, Erdemir A, ed., Springer, Boston, MA. 2008, pp.155.
53 Igartua A, Berriozabal E, Zabala B, et al. In: 16th European Space Mechanisms and Tribology Symposium. Bilbao,2015.
54 Ji L, Li H, Zhao F, et al. Applied Surface Science,2009,255(7),4180.
55 Ji L, Li H, Zhao F, et al. Applied Surface Science,2009,255(20),8409.
56 Guo Z T, Xiong D S, Ge S R. Physical Testing and Chemical Analysis Parta Physical Testing,2001(9),369(in Chinese).
郭治天,熊党生,葛世荣.理化检验(物理分册),2001(9),369.
57 Hu J B. Machinery,2001(6),30(in Chinese).
胡俊标.机械制造,2001(6),30.
58 Yuan Z, Qin Y, Cheng K, et al. Proceedings of the Institution of Mecha-nical Engineers, Part C: Journal of Mechanical Engineering Science,2019,233(12),4091.
59 Yuan Z, Qin Y, Deng C, et al. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribolog,2018,233(7),797.
60 Qiu M, Gao Z L, Yao S J, et al. Manufacturing Automation Technology Development,2011,455,406.
61 Qiu M, Yang Z P, Lu J J, et al. Tribology International,2017,113,344.
62 Li Y W, Li J, Zhao Y C, et al. Bearing,2017(9),49(in Chinese).
李彦伟,林晶,赵颖春,等.轴承,2017(9),49.
[1] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[2] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[3] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[4] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[5] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[6] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[7] 蒋晔, 颜建辉, 李茂键. 不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能[J]. 材料导报, 2020, 34(18): 18025-18029.
[8] 王宇, 曾伟, 韩靖, 戴光泽, 赵君文, 徐忠宣. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124.
[9] 王玮华, 谢发勤, 吴向清, 王少青, 姚小飞. 火箭橇滑块超声速、大载荷摩擦磨损失效机理[J]. 材料导报, 2020, 34(16): 16136-16139.
[10] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[11] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[12] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[13] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[14] 庄伟彬, 田宗伟, 刘广柱, 孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
[15] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed