Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1046-1057    https://doi.org/10.11896/cldb.20030221
  无机非金属及其复合材料 |
大面积钙钛矿薄膜制备技术的研究进展
杨志春1,†, 吴狄1,2,†, 剡晓波1,2, 蒋昭毅1, 刘宗豪1, 陈炜1,2
1 华中科技大学武汉光电国家研究中心,武汉 430074
2 华中科技大学中欧清洁与可再生能源学院,武汉 430074
Research Progresses on the Preparation Technologies Towards Large-area Perovskite Thin Films
YANG Zhichun1,†, WU Di1,2,†, YAN Xiaobo1,2, JIANG Zhaoyi1, LIU Zonghao1, CHEN Wei1,2
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 China-EU Institute for Clean and Renewable Energy,Huazhong University of Science and Technology, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 9201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机-无机杂化钙钛矿太阳能电池因其较高的光电转换效率和较低的生产成本而备受关注。其优异的光电性能主要归因于该类钙钛矿材料的光吸收系数高、载流子迁移率高、载流子寿命长、带隙可调等物理特性;由于其可基于溶液加工法进行规模化生产,使其生产成本大幅降低,并快速成为新型薄膜太阳能电池新星。在过去十年的时间里,钙钛矿太阳能电池小面积器件 (<1 cm2) 的光电转换效率已经从2009年的3.8%迅速飙升至25.2%;而其小模块级组件 (10~800 cm2) 效率已提升至18.04%;模块级组件 (>800 cm2) 的光电转换效率也已经刷新到16.1%。小面积器件和模块级组件效率失配的关键因素之一是高质量、高均一性的大面积钙钛矿薄膜沉积方法的局限性。小面积器件钙钛矿成膜通常使用的是溶液旋涂法;但是,溶液旋涂法存在厚度不均匀、原料浪费严重等缺点,因而不适合用于制备大面积钙钛矿薄膜。当前,大面积钙钛矿薄膜的沉积方案处于多样化的研究当中,尚未形成稳定的工业化生产规模。迄今为止,主要报道的大面积钙钛矿薄膜的制备方法主要有:刮刀涂布法、狭缝涂布法、喷涂法、喷墨打印法、软覆盖沉积法、气相沉积法。
   本文归纳总结了近期大面积钙钛矿薄膜制备方法的研究进展;并对其基本原理进行分析与讨论,对比了各种大面积钙钛矿薄膜制备方法的优缺点;展望了它们在未来研究和产业化过程所面临的问题及其发展前景;旨在加深读者对大面积钙钛矿薄膜的沉积方法的理解,以期为大面积、高效率钙钛矿模组的研究与开发提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨志春
吴狄
剡晓波
蒋昭毅
刘宗豪
陈炜
关键词:  大面积  钙钛矿薄膜  模组  光电转换效率    
Abstract: Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted widespread attention due to their high power conversion efficiency (PCE) and low fabrication costs. Their excellent photoelectric performances are mainly attributed to the unique physical properties of perovskites, such as high light absorption coefficient, high carrier mobility, long carrier life, tunable band gap. They have quickly become a star of new-generation thin-film solar cells, because they can be manufactured on large scale via solution processing method. In the past decade, the PCE of small-area devices (<1 cm2) of PSCs has skyrocketed from 3.8% in 2009 to 25.2% now; the efficiency on small module-level device (10—800 cm2) has been increased to 18.04%; the PCE on module-level device (>800 cm2) has also been refreshed to 16.1%. One of the key factors for the performance mismatch between small-area and module-level devices is the limitation of the deposition methods for large-area perovskite thin films with high quality and uniformity. The general deposition method of perovskite films for small-area devices is spin-coating. However, this met-hod exhibits the disadvantages of uninform thickness and the waste of raw materials in scalable fabrication; so, it is not suitable for fabricating large-area perovskite thin films. Currently, the deposition scheme of large-area perovskite thin films is under diversified research, and the stable industrial production scale has not yet been formed. So far, the mainly reported methods of the deposition of large-area perovskite films including doctor blading, slot-die coating, spraying coating, inkjet printing, soft-cover deposition and the vacuum vapor deposition. This review has summarized the recent research progresses on the preparation methods of large-area perovskite thin films; the basic deposition principles as well as the advantages and disadvantages of various deposition technologies have also been introduced. Finally, the problems they will be faced in the follo-wing study and in the process of industrialization have been outlined, aiming at improving the understanding of the deposition methods of large-area perovskite thin films for readers and providing useful reference for the study of large-area and high-efficiency perovskite solar modules.
Key words:  large-area    perovskite thin films    solar module    power conversion efficiency
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TM914  
基金资助: 国家自然科学基金项目(面上项目,重点项目,重大项目)(51672094;51861145404;51822203)
作者简介:  杨志春,2014年6月毕业于运城学院,获得理学学士学位。2017年6月毕业于华中科技大学,获得理学硕士学位。现为华中科技大学武汉光电国家研究中心博士研究生,在陈炜教授的指导下进行研究。目前主要研究领域为大面积钙钛矿薄膜及模组的研究。
吴狄,2017年6月毕业于长江大学,获得理学学士学位。现为华中科技大学中欧清洁与可再生能源学院硕士研究生,师从武汉光电国家研究中心陈炜教授。目前主要研究领域为有机-无机杂化钙钛矿太阳能电池,研究方向包括反式钙钛矿太阳能电池界面层修饰、空穴传输层材料的研究以及面向产业化的大面积钙钛矿成膜工艺等。
刘宗豪,华中科技大学博士,华中科技大学武汉光电国家研究中心副教授,湖北省楚天学者计划“楚天学子”。2017—2019年日本冲绳科学技术大学院大学博士后。研究领域主要集中于有机-无机钙钛矿太阳能电池与光电器件。
陈炜,清华大学材料科学与工程博士,华中科技大学武汉光电国家研究中心教授,国家优秀青年科学基金获得者。2008—2010年,中国香港科技大学化学系博士后研究员。2014—2015年,日本国立材料科学研究所访问学者。研究领域涵盖功能纳米材料和半导体薄膜在下一代太阳能电池(包括PSC)中的合成,理解和应用。
引用本文:    
杨志春, 吴狄, 剡晓波, 蒋昭毅, 刘宗豪, 陈炜. 大面积钙钛矿薄膜制备技术的研究进展[J]. 材料导报, 2021, 35(1): 1046-1057.
YANG Zhichun, WU Di, YAN Xiaobo, JIANG Zhaoyi, LIU Zonghao, CHEN Wei. Research Progresses on the Preparation Technologies Towards Large-area Perovskite Thin Films. Materials Reports, 2021, 35(1): 1046-1057.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030221  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1046
1 Kim H S, Lee C R, Im J H, et al. Scientific Reports,2012,2,591.
2 Yang Z, Zhang S, Li L, et al. Journal of Materiomics,2017,3,231.
3 Kim D H, Whitaker J B, Li Z, et al. Joule,2018,2,1437.
4 Li Z, Klein T R, Kim D H, et al. Nature Reviews Materials,2018,3,1.
5 Park N G, Zhu K. Nature Reviews Materials,2020,5,333.
6 Yang Z, Babu B H, Wu S, et al. Solar RRL,2020,4,1900257.
7 Huang F, Li M, Siffalovic P, et al. Energy & Environmental Science,2019,12,518.
8 Lee J W, Lee D K, Jeong D N, et al. Advanced Functional Materials,2019,29,1807047.
9 Xiao M, Huang F, Huang W, et al. Angewandte Chemie International Edition,2014,53,9898.
10 Li X, Bi D, Yi C, et al. Science,2016,353,58.
11 Dai X, Deng Y, Van Brackle C H, et al. Advanced Energy Materials,2020,10,1903108.
12 Bi D, Yi C, Luo J, et al. Nature Energy,2016,1,1.
13 Deng Y, Zheng X, Bai Y, et al. Nature Energy,2018,3,560.
14 Yang M, Li Z, Reese M O, et al. Nature Energy,2017,2,17038.
15 Zhou Y, Yang M, Wu W, et al. Journal of Materials Chemistry A,2015,3,8178.
16 Cotella G, Baker J, Worsley D, et al. Solar Energy Materials and Solar Cells,2017,159,362.
17 Kim J E, Jung Y S, Heo Y J, et al. Solar Energy Materials and Solar Cells,2018,179,80.
18 Rong Y, Ming Y, Ji W, et al. The Journal of Physical Chemistry Letters,2018,9,2707.
19 Galagan Y, Di Giacomo F, Gorter H, et al. Advanced Energy Materials,2018,8,1801935.
20 Cai L, Liang L, Wu J, et al. Journal of Semiconductors,2017,38,014006.
21 Krebs F C. Solar Energy Materials and Solar Cells,2009,93,465.
22 Liu F, Ferdous S, Schaible E, et al. Advanced Materials,2015,27,886-891.
23 Wengeler L, Schmitt M, Peters K, et al. Chemical Engineering and Processing: Process Intensification,2013,68,38.
24 Whitaker J B, Kim D H, Larson B W, et al. Sustainable Energy & Fuels,2018,2,2442.
25 Di Giacomo F, Shanmugam S, Fledderus H, et al. Solar Energy Materials and Solar Cells,2018,181,53.
26 Habibi M, Zabihi F, Ahmadian-Yazdi M R, et al. Renewable and Sustainable Energy Reviews,2016,62,1012.
27 Das S, Yang B, Gu G, et al. ACS Photonics,2015,2,680.
28 Uličnaá S, Dou B, Kim D H, et al. ACS Applied Energy Materials,2018,1,1853.
29 Tait J G, Manghooli S, Qiu W, et al. Journal of Materials Chemistry A,2016,4,3792.
30 Chandrasekhar P S, Kumar N, Swami S K, et al. Nanoscale,2016,8,6792.
31 Heo J H, Lee M H, Jang M H, et al. Journal of Materials Chemistry A,2016,4,17636.
32 Barrows A T, Pearson A J, Kwak C K, et al. Energy & Environmental Science,2014,7,2944.
33 Wei Z, Chen H, Yan K, et al. Angewandte Chemie International Edition,2014,53,13239.
34 Mathies F, Abzieher T, Hochstuhl A, et al. Journal of Materials Chemistry A,2016,4,19207.
35 Razza S, Castro-Hermosa S, Di Carlo A, et al. APL Materials,2016,4,091508.
36 Li S G, Jiang K J, Su M J, et al. Journal of Materials Chemistry A,2015,3,9092.
37 Li P, Liang C, Bao B, et al. Nano Energy,2018,46,203.
38 Ye F, Chen H, Xie F, et al. Energy & Environmental Science,2016,9,2295.
39 He J, Bi E, Tang W, et al. Nano-Micro Letters,2018,10,49.
40 Chen H, Ye F, Tang W, et al. Nature,2017,550,92.
41 Leyden M R, Ono L K, Raga S R, et al. Journal of Materials Chemistry A,2014,2,18742.
42 Leyden M R, Jiang Y, Qi Y. Journal of Materials Chemistry A,2016,4,13125.
43 Ávila J, Momblona C, Boix P P, et al. Joule,2017,1,431.
44 Qiu L, He S, Jiang Y, et al. Journal of Materials Chemistry A,2019,7,6920.
45 Shen P S, Chen J S, Chiang Y H, et al. Advanced Materials Interfaces,2016,3,1500849.
46 Chen Q, Zhou H, Hong Z, et al. Journal of the American Chemical Society,2014,136,622.
47 Razza S, Di Giacomo F, Matteocci F, et al. Journal of Power Sources,2015,277,286.
48 Deng Y, Van Brackle C H, Dai X, et al. Science Advances,2019,5,eaax7537.
49 Dai X, Deng Y, Van Brackle C H, et al. Advanced Energy Materials,2020,10,1903108.
50 Hwang K, Jung Y S, Heo Y J, et al. Advanced Materials,2015,27,1241.
51 Cai L, Liang L, Wu J, et al. Journal of Semiconductors,2017,38,014006.
52 Jiang Y, Leyden M R, Qiu L, et al. Advanced Functional Materials,2018,28,1703835.
53 Jiang Y, Remeika M, Hu Z, et al. Advanced Energy Materials,2019,9,1803047.
54 Leyden M R, Jiang Y, Qi Y. Journal of Materials Chemistry A,2016,4,13125.
55 Luo L, Zhang Y, Chai N, et al. Journal of Materials Chemistry A,2018,6,21143.
[1] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[2] 何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
[3] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[4] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed