Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3242-3250    https://doi.org/10.11896/cldb.18070217
  无机非金属及其复合材料 |
核壳纳米复合润滑材料研究进展
杨亚文1,2, 王娜1,2, 任俊芳1, 高贵1, 陈生圣1, 王宏刚1
1 中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000;
2 中国科学院大学材料科学与光电技术学院,北京 100049
Research Progress of Composite Lubricating Material with Core-Shell Structure
YANG Yawen1,2, WANG Na1,2, REN Junfang1, GAO Gui1, CHEN Shengsheng1, WANG Honggang1
1 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
下载:  全 文 ( PDF ) ( 2215KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 润滑材料作为提高机械系统服役寿命的关键材料,已成为高端装备技术发展的重要组成部分。长期以来,探索低摩擦、高耐磨一体化的高性能固体润滑剂是摩擦学材料领域的重要研究方向。通过功能纳米材料的化学定向结合制备具有润滑与耐磨功能的核壳复合粒子,将对提高材料的摩擦学性能具有重要意义。
软硬相粒子的结构与分散性是影响润滑材料摩擦学性能的重要因素。传统机械混合法易产生材料的相分离或分散不均匀等问题,已无法满足苛刻工况对材料低摩擦和耐磨损的技术要求。核壳纳米材料由于其复合体系间稳定的界面结合力和可控的表面化学状态,可以实现苛刻工况下润滑材料的长寿命、低摩擦和良好的服役可靠性,在润滑材料领域中具有广阔的应用前景。
核壳复合材料在结构调控与形态分布等方面具有较强的灵活性,核壳界面的相互作用可以为可控性制备及形成结构稳定且易于均匀分散的核壳复合体提供重要基础。在结构调控方面,近年来重点开展了核壳纳米材料的组成、结构演变、尺度、形态以及分散性等研究。在制备方法方面,自组装、溶胶-凝胶、微乳液聚合、软硬模板等技术手段对于提高核壳粒子的热力学稳定性和界面作用具有不同的优缺点。在摩擦学机理方面,大量研究揭示了摩擦过程中核壳粒子的动态结构变化规律,通过薄膜润滑理论、渗透层作用机制、第三体抗磨机理、滚动轴承作用和自耗机理等论述,多角度阐明了核壳结构纳米粒子的摩擦学作用机制。在润滑材料的应用方面,各类功能型核壳纳米粒子在提高润滑油功能添加剂、高分子涂层以及高分子复合材料的性能发挥方面起到了重要作用。研究表明,具有特征结构优势的核壳纳米粒子对提高润滑材料的摩擦学性能和承载能力具有重要意义。
本文结合国内外的研究现状,系统综述了核壳复合材料的常见类型、制备方法、结构调控机理、摩擦磨损机制以及在润滑材料中的应用,展望了未来核壳纳米材料在润滑与失效机理、精准复配与性能优化、核壳结构自修复机理等方面的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨亚文
王娜
任俊芳
高贵
陈生圣
王宏刚
关键词:  核壳结构  润滑材料  结构调控  摩擦转移    
Abstract: Lubricating materials, as a crucial matter to improve the service life of the mechanical system, have become an important part of the development of high-end equipment technology. For a long time, it has been an important research direction in the field of tribological materials to explore high-performance solid lubricant with low friction and high wear resistance. Core-shell composite particles with the properties of lubricating and wear-resisting can be prepared as high-performance solid lubricants by the chemical directional combination of the functional nanomaterials, which is of great significance to improve the tribological properties of materials.
The structure and dispersion of soft and hard phase particles are the key means to improve the tribological properties of lubricating materials. Due to phase-separation and non-uniform dispersion, the traditional mechanical-mixing method cannot meet the service requirements of low friction and wear-resistant materials under harsh working conditions. Because of the stable interfacial bonding force and regulatable surface chemical state between the composite systems, the core-shell nanomaterials can realize the long life, low friction and operational reliability of lubricating materials under harsh working conditions, and have promising prospects in the field of lubrication materials.
The core-shell nanomaterials have the advantage of presenting greater flexibility in structural regulation and morphological distribution. The interfacial interaction of the core-shell structure provides an essential basis for the controllable preparation of the core-shell particle and the formation of core-shell complex with stable structure and uniform dispersion. In terms of structural regulation, the research on the composition, structure evolution, scale, morphology and dispersion of core-shell nanomaterials has been carried out in recent years. In the preparation methods, self-assembly method, the sol-gel method, microemulsion polymerization, hard and soft template method and other technical means have different advantages and disadvantages for improving the thermodynamic stability and interfacial interaction of core-shell particles. In the matter of tribological mechanism, a large number of studies have revealed the dynamic evolution laws of core-shell particles in the process of friction. The tribological mechanism of core-shell nanoparticles has been clarified from multiple perspectives through the film lubrication mechanism, the permeable layer concept, the third body anti-wear mechanism, the rolling-bearing action and the self-consumption mechanism. In the application of lubricating materials, various functional core-shell nanoparticles play an important role in improving the properties of lubricant functional additives, polymer coa-tings and polymer composites. The results show that the core-shell nanoparticles with characteristic structural advantages are of great significance for improving the tribological properties and bearing capacity of lubricating materials.
Based on the current research situation at home and abroad, this paper systematically reviews the common types, preparation methods, structure regulation mechanism, friction and wear mechanism of the core-shell composites, as well as the application in lubricating materials. The future research direction of core-shell nanomaterials in the lubrication and the failure mechanism, accurate compounding and performance optimization, and the self-healing mechanism of core-shell structure is also outlooked.
Key words:  core/shell structure    lubricating materials    structure control    friction transfer
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51675509);国家高技术研究发展计划(863计划)(2015AA034602)
作者简介:  杨亚文,2017年6月毕业于西北师范大学,获得理学学士学位。现为中国科学院兰州化学物理研究所硕士研究生,在王宏刚研究员和任俊芳副研究员的指导下进行研究。目前主要的研究领域为高分子材料的合成及其在润滑领域的应用。王宏刚,中国科学院兰州化学物理研究所研究员,硕士研究生导师。1998年本科毕业于华北工学院高分子化工专业,2008年在中国科学院兰州化学物理研究所获得博士学位。发表论文30余篇,授权中国发明专利10余件。主要从事高分子材料的结构调控、界面相互作用与摩擦学性能,聚合物微纳米复合材料的结构演变与化学相互作用机理等研究。Hgwang@licp.cas.cn.任俊芳,中国科学院兰州化学物理研究所副研究员。2003年7月本科毕业于河南师范大学化学化工学院,2009年7月在中国科学院兰州化学物理研究所物理化学专业取得博士学位。2009年7月至今,在中国科学院兰州化学物理研究所工作。主要从事聚合物复合润滑材料的结构调控和摩擦学性能研究。
引用本文:    
杨亚文, 王娜, 任俊芳, 高贵, 陈生圣, 王宏刚. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19): 3242-3250.
YANG Yawen, WANG Na, REN Junfang, GAO Gui, CHEN Shengsheng, WANG Honggang. Research Progress of Composite Lubricating Material with Core-Shell Structure. Materials Reports, 2019, 33(19): 3242-3250.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070217  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3242
1 Patrice M, Sylvie B C, Luc D J, et al. Physics Reports,2014,543(3),163.2 Qi J, Chen J, Li G, et al. Energy & Environmental Science,2012,5(10),8937.3 Chaudhuri R G,Paria S. Chemical Reviews,2012,112,2373.4 Addanki S,Nedumaran D. Optics Communications,2017,394,62.5 Li F, Gao X, Wang R, et al. Sensors and Actuators B: Chemical,2017,248,812.6 Zhao L, Sun C, Tian G, et al. Journal of Colloid and Interface Science,2017,502,1.7 Kalska-Szostko B, Klekotka U,Satuł a D. Applied Surface Science,2017,396,1855.8 Han W J, Piao S H, Choi H J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,524,79.9 Qi X, Hu Q, Xu J, et al. Materials Science and Engineering: B,2016,211,53.10 Wang Y, Zhang W, Luo C, et al. Synthetic Metals,2016,220,347.11 Wang C, Xu T,Wang C A. Ceramics International,2016,42(7),9178.12 Chen Y, Qin J, Wang Y, et al. Journal of Nanoparticle Research,2015,17(9),363.13 Chen Y, Chen A,Qin J. Journal of Porous Materials,2017,24(6),1667.14 Wu Z. Preparation and application of core/shell nanocomposite materials. Master’s Thesis, Anhui University of Science and Technology, China,2015(in Chinese).吴正.核壳纳米复合材料的制备及应用.硕士学位论文,安徽理工大学,2015.15 Shchukin D G, Lamaka S V, Yasakau K A, et al. Journal of Physical Chemistry C,2008,112,958.16 Ohmae N,Liu J. Nanotribology, Elsevier, Germany,2016.17 Burris D L, Boesl B, Bourne G R, et al. Macromolecular Materials and Engineering,2007,292(4),387.18 Chen B, Gu K, Fang J, et al. Applied Surface Science,2015,353,326.19 Sparnacci K, Antonioli D, Deregibus S, et al. Macromolecules,2009,42,3518.20 Chen L J, Zhao Y B, Wu Z S, et al. Lubrication Engineering,2005(1),26(in Chinese).陈利娟,赵彦保,吴志申,等.润滑与密封,2005(1),26.21 Li B, Wang X, Liu W, et al. Tribology Letters,2006,22(1),79.22 Ji X B, Chen Y X, Du Q L, et al. Lubrication engineering,2015,40(4),58(in Chinese).纪献兵,陈银霞,杜庆丽.润滑与密封,2015,40(4),58.23 Chen Y, Zhou S, Yang H, et al. Journal of Sol-Gel Science and Technology,2006,37(1),39.24 Liu X F. Journal of Henan University of Science and Technology: Natural Science,2012(33),4(in Chinese).刘晓飞.河南科技大学学报:自然科学版,2012(33),4.25 Antonioli D, Deregibus S, Panzarasa G, et al. Polymer International,2012,61,1294.26 Giani E, Sparnacci K,Laus M. Macromolecules,2003,36,4360.27 Chen Z, Li J, Cui X, et al. Colloid and Polymer Science,2005,284(2),218.28 Santra S, Tapec R, Theodoropoulou N, et al. Langmuir,2001,17,2900.29 Ding H, Zhang Y, Wang S, et al. Chemistry of Materials,2012,24(23),4572.30 Hu Y, Liu Y, Xie X, et al. Journal of Colloid and Interface Science,2018,529,547.31 Sertchook H,Avnir D. Chemistry of Materials, 2003,15,1690.32 Dong A G, Wang Y J, Tang Y, et al. Chemical Communication,2002,350.33 Yang Z, Niu Z, Lu Y, et al. Angewandte Chemie,2003,115(17),1987.34 Sun Y, Zhou B, Gao P, et al. Journal of Alloys and Compounds,2010,490(1-2),48.35 Cui X, Zhong S, Zhang H, et al. Polymers for Advanced Technologies,2007,18(7),544.36 Hayes R, Ahmed A, Edge T, et al. Journal of Chromatography A,2014,1357,36.37 Perera V, Liu H, Wang Z Q, et al. Chemistry of Materials,2013,25(23),4703.38 Lee D K, Song Y, Tran V T, et al. Journal of Colloid and Interface Science,2017,499,54.39 Li T, Moon J, Morrone A A, et al. Langmuir,1999,15,4328.40 Chunyan Song, Wujiang Yu, Bin Zhao, et al. Catalysis Communications,2009,10(5),650.41 Yang J, Lind J U,Trogler W C. Chemistry of Materials,2008,20(9),2875.42 M. Yu, J. Lin, Fang J. Chemistry of Materials,2005,17,1783.43 Hwa Y, Kim W S, Yu B C, et al. The Journal of Physical Chemistry C,2013,117(14),7013.44 Sara T L, Mohammad M, Mehdi M, et al. Energy,2015,85,635.45 Soulé S, Allouche J, Dupin J C, et al. Microporous and Mesoporous Materials,2013,171,72.46 Liu P. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,291(1-3),155.47 Chatterjee A,Mishra S. Particuology,2013,11,760.48 Ghows N, Entezari M H. Ultrason Sonochem,2011,18(2),629.49 Ethayaraja M, Ravikumar C, Muthukumaran D, et al. Journal of Physical Chemistry C,2007,111,3246.50 Almana N, Phivilay S P, Laveille P, et al. Journal of Catalysis,2016,340,368.51 Saboor F H, Khodadadi A A, Mortazavi Y, et al. Sensors and Actuators B: Chemical,2017,238,1070.52 Chatterjee A, Khobragade P, Mishra S, et al. Particuology,2017,30,118.53 Ohmori M, Matijević E. Journal of Colloid And Interface Science,1993,160(2),288.54 Cao J, Wang B, Han D, et al. Materials Letters,2014,135,71.55 Korhonen J T, Hiekkataipale P, Malm J, et al. ACS Nano,2011,5(3),1967.56 Sekiya E H, Barua P, Saito K, et al. Journal of Non-Crystalline Solids,2008,354(42-44),4737.57 Tai Y, Chen H, Xu C, et al. Materials Letters,2017,188,80.58 Song C, Kim Y, Ju B, et al. Materials & Design,2016,89,1278.59 Cash Brandon M, Wang L,Benicewicz Brian C. Journal of Polymer Science Part A: Polymer Chemistry,2012,50(13),2533.60 Kotsuchibashi Y, Faghihnejad A, Zeng H, et al. Polymer Chemistry,2013,4(4),1038.61 Zhang Z, Zhang J, Wang Y, et al. Talanta,2017,167,428.62 Kim H,Lah M S. Dalton Transactions,2017,46(19),6146.63 Qian H, Tang J, Hossain M S A, et al. Nanoscale,2017,9(42),16264.64 Zhao T, Liu X, Li Y, et al. Journal of Colloid and Interface Science,2017,490,436.65 Wu X,Xu D. Advanced Materials,2010,22(13),1516.66 Sasidharan M, Zenibana H, Nandi M, et al. Dalton Transactions,2013,42(37),13381.67 Li Y,Wu X. Ionics,2018,24(5),1329.68 Chiñas-Castillo F,Spikes H A. Journal of Tribology,2003,125(3),552.69 Masood M T, Heredia-Guerrero J A, Ceseracciu L, et al. Chemical Engineering Journal,2017,322,10.70 Cui X, Zhong S, Xu J, et al. Colloid and Polymer Science,2007,285(8),935.71 Luis M, Liz-Marza′n, Michael Giersig, et al. Langmuir 1996,12,4329.72 Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. Journal of Physical Chemistry B,1997,101,9463.73 Zhang D, Kou K, Gao C Y, et al. Journal of Polymer Research,2012,19(5),9873.74 Feng L, He L, Ma Y, et al. Materials Chemistry and Physics,2009,116(1),158.75 Wu F, Zhang B, Yang W, et al. Polymer,2014,55(22),5760.76 Sarikhani K, Jeddi K, Thompson R B, et al. Langmuir,2015,31(20),5571.77 Luis M, Liz-Marza, Michael Giersig P M. Langmuir,1996,12,4329.78 Kato K, Uchida E, Kang E T, et al. Progress in Polymer Science,2003,28,209.79 Reeves C J, Menezes P L. The International Journal of Advanced Manufacturing Technology,2017,89(9),3475.80 Pitenis A, Junk C, Sawyer G, et al. Tribology Letters,2015,57(1),4.81 Zhang B, Yu B S, Xu Y, et al. Tribology,2011,31(2),194(in Chinese).张博,徐滨士,许一,等.摩擦学学报,2011,31(2),194.82 Wu Y Y, Tsui W C, Liu T C. Wear,2007,262(7-8),819.83 Wang Y, Wan Z, Lu L, et al. Tribology International,2018,124,10.84 Rapoport L, Feldman Y, Homyonfer M, et al. Wear,1999,225-229,975.85 Li J L, Xiong D S,Huo M F. Wear,2008,265(3),566.86 Liu X, Zhang L. Lubes & Fuels,2006(16),9(in Chinese).刘新,张立.润滑油与燃料,2006(16),9.87 Zeng Q, Yu F, Dong G. Surface and Interface Analysis,2013,45(8),1283.88 Scharf T W, Goeke R S, Kotula P G, et al. ACS Applied Materials and Interfaces,2013,5(22),11762.89 Krick B A, Ewin J J, Mccumiskey E J. Tribology Transactions,2014,57,1058.90 Haung H D. Tribological properties of flake graphite and inorganic fullerenes molybdenum disulfide as lubricating oil additives. Master’s Thesis, Zhejiang University, China,2006(in Chinese).黄海栋.片状纳米石墨和无机类富勒烯二硫化钼作为润滑油添加剂的摩擦学性能.硕士学位论文,浙江大学,2006.91 Gosvami N N, Bares J A, Mangolini F, et al. Science,2015,348(6230),102.92 Stefanov M, Enyashin A N, Heine T, et al. The Journal of Physical Chemistry C,2008,112(46),17764.93 Chen Y, Qian C,Miao N. Thin Solid Films,2015,579,57.94 Zuiderduin W C J, Westzaan C, Huétink J, et al. Polymer,2003,44(1),261.95 Krick B A, Ewin J J, Edwardj J M. Tribology Transactions,2014,57,1058.96 Menezes P L, Kishore, Kailas S V, et al. Wear,2011,271,2213.97 Zhao Y B, Zhou J F, Zhang Z J, et al. Tribology,2001,21,73(in Chinese).赵彦保,周静芳,张治军,等.摩擦学学报,2001,21,73.98 Li C F, Luo X M, Hou B, et al. Tribology,2008,28(2),133(in Chinese).李春风,罗新民,侯滨,等.摩擦学学报,2008,28(2),133.99 Che J F. Surface modification and dispersion of nano-oxide and its application in polymer friction materials. Ph.D. Thesis, Nanjing University of Science and Technology,China,2005(in Chinese).车剑飞.纳米氧化物表面改性与分散技术及其在高分子摩擦材料中的应用.博士学位论文,南京理工大学,2005.100 Mitchell K, Neville A, Walker G M, et al. Tribology International,2018,124,124.101 Wang H, Yan L, Liu D, et al. Tribology International,2015,83,139.102 Liu Y, Liu J. Construction and Building Materials,2016,122,90.103 Rathnayake R M N M, Mantilaka M M M G P G, Hara M, et al. Applied Surface Science,2017,410,445.104 Ma R, Fang L, Luo Z, et al. Applied Surface Science,2014,314,341.105 Picchio M, Passeggi M, Barandiaran M, et al. Progress in Organic Coatings,2016,101,587.106 Wang Y,Bhushan B. ACS Applied Materials and Interfaces,2015,7(1),743.107 Yuan R, Wu S, Yu P, et al. ACS Applied Materials and Interfaces,2016,8(19),12481.108 Verma J, Nigam S, Sinha S, et al. Vacuum,2018,153,24.109 Zhuang L, Fu Q G,Yu X. Journal of the European Ceramic Society,2018,38(7),2808.110 Wu Z, Zhai W, He Y, et al. Progress in Organic Coatings,2014,77(11),1841.111 Liu Z, Dai M, Wang C, et al. Progress in Organic Coatings,2016,101,350.112 Lin L Y,Kim D E. Tribology International,2011,44(12),1926.113 Ben H J, Ji C Q, Cheng F, et al. Industrial & Engineering Chemistry Research,2014,53(44),17362.114 Guo Y, Wang M, Zhang H, et al. Journal of Applied Polymer Science,2007,107(4),2671.115 Rybak A,Gaska K. Journal of Materials Science,2015,50(23),7779.116 Liu S, Fan X,He C. Composites Science and Technology,2016,125,132.117 Li H, Li S, Li Z, et al. Langmuir,2017,33(49),14149.118 Yoonessi M, Lerch B, Peck J, et al. ACS Applied Materials & Interfaces,2015,7(31),16932.
[1] 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916.
[2] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[3] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[4] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[5] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[6] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[7] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[8] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[9] 蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
[10] 李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed