Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 22010032-12    https://doi.org/10.11896/cldb.22010032
  金属与金属基复合材料 |
Fe-Mn-Al-C系低密度钢热处理研究进展
孙建1,2, 黄贞益1,*, 李景辉1, 王萍1, 章小峰1
1 安徽工业大学冶金工程学院,安徽 马鞍山 243002
2 铜陵学院机械工程学院,安徽 铜陵244061
Research Progress in Heat Treatment of Fe-Mn-Al-C System Low-density Steel
SUN Jian1,2, HUANG Zhenyi1,*, LI Jinghui1, WANG Ping1, ZHANG Xiaofeng1
1 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China
2 School of Mechanical Engineering, Tongling University, Tongling 244061, Anhui, China
下载:  全 文 ( PDF ) ( 46567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在节能环保大背景下,汽车工业领域用钢不断得到升级优化,作为新一代先进钢铁材料,Fe-Mn-Al-C系低密度钢以其低密度和高强韧性得到了越来越多的关注。Fe-Mn-Al-C系低密度钢中基本合金元素为Fe、Mn、Al、C,基本组成相为奥氏体(γ)、铁素体(α),在一定工艺条件下,还含有κ-碳化物、B2、DO3和β-Mn等析出相,根据其组成相,可分为铁素体低密度钢、奥氏体低密度钢、铁素体基低密度钢和奥氏体基低密度钢。
热处理工艺对调控低密度钢组织构成和析出相的析出行为有着重要作用,进而提高低密度钢的综合力学性能。研究表明,退火处理可以有效地消除冷轧低密度钢的带状组织,改善其强韧性;而控制固溶和时效处理工艺,可以调控析出相的大小、形态、分布等获得高强塑积低密度钢,因此热处理是优化低密度钢综合性能的一个行之有效的方法。
本文对Fe-Mn-Al-C系低密度钢的成分设计和组成相特点作了介绍,从热处理工艺角度出发,对该体系钢的微观结构和力学性能影响进行了综述,着重从退火、固溶处理和时效处理等热处理方式进行了阐释,基于Fe-Mn-Al-C系低密度钢研究现状,对该体系钢未来的研究方向进行了展望,为后续研究提供一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙建
黄贞益
李景辉
王萍
章小峰
关键词:  Fe-Mn-Al-C  低密度钢  热处理  显微组织  力学性能    
Abstract: Under the background of energy saving and environmental protection, steel used in the automotive industry has been continuously upgraded and optimized. As a new generation of advanced steel materials, Fe-Mn-Al-C series low-density steel has attracted more and more attention due to its low density and high strength and toughness. The basic alloying elements in Fe-Mn-Al-C series low-density steel are Fe, Mn, Al, and C, and the basic phase constituents are austenite (γ) and ferrite (α). It also contains κ-carbide, B2, DO3 and β-Mn and other precipitation phases under different processing and heat treatment conditions. According to phase constituents, it can be divided into ferritic low-density steel, austenitic low-density steel, ferritic based low-density steel and austenitic based low-density steel.
The heat treatment process plays an important role in regulating the microstructure and precipitation behavior of low-density steel, which can improve the comprehensive mechanical properties of low-density steel. Studies have shown that annealing treatment can effectively eliminate the band-like structure of cold-rolled low-density steel and improve its strength and toughness; while controlling the solid solution and aging treatment processes can control the size, shape, and distribution of the precipitates to obtain high-strength plastic products with low density steel, so heat treatment is an effective way to optimize the overall properties of low-density steel.
In this paper, the composition design and phase characteristics of Fe-Mn-Al-C series low-density steel are introduced. The influence of heat treatment process on microstructure and mechanical properties of the steel was reviewed, the heat treatment methods such as annealing treatment, solution treatment and aging treatment are explained. Based on the research status of Fe-Mn-Al-C series low-density steel, the future research direction of this steel is prospected, which can serve as reference for further research.
Key words:  Fe-Mn-Al-C    low-density steel    heat treatment    microstructure    mechanical property
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51674004;51805002);安徽省高等学校自然科学研究重点项目(2022AH051760);工程液压机器人安徽普通高校重点实验室(铜陵学院)开放课题资助项目(TLXYCHR-O-21YB03);铜陵学院产学研项目(2023tlxyxdz077)
通讯作者:  *黄贞益,博士毕业于南京理工大学,现为安徽工业大学教授,博士研究生导师。长期以来从事钢铁材料成型理论、工艺、性能控制等领域的应用基础和工程技术的教学和研究。主编安徽省规划教材一部,获中国冶金教育类优秀教材一等奖,发表论文60余篇,授权发明专利11项、实用新型专利4项。主持参加完成国家支撑计划项目、国家自然科学基金项目、国家钢铁联合基金重点项目等重大难题攻关项目60余项。huangzhenyi@ahut.edu.cn   
作者简介:  孙建,讲师,安徽工业大学冶金工程专业博士研究生,在黄贞益教授的指导下进行研究。目前主要研究领域为先进钢铁材料加工工艺及组织性能调控。
引用本文:    
孙建, 黄贞益, 李景辉, 王萍, 章小峰. Fe-Mn-Al-C系低密度钢热处理研究进展[J]. 材料导报, 2023, 37(14): 22010032-12.
SUN Jian, HUANG Zhenyi, LI Jinghui, WANG Ping, ZHANG Xiaofeng. Research Progress in Heat Treatment of Fe-Mn-Al-C System Low-density Steel. Materials Reports, 2023, 37(14): 22010032-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010032  或          http://www.mater-rep.com/CN/Y2023/V37/I14/22010032
1 Ma T, Li H R, Gao J X, et al. Materials Reports, 2020, 34(23), 23154(in Chinese).
马涛, 李慧蓉, 高建新, 等. 材料导报, 2020, 34(23), 23154.
2 Tang D, Mi Z L, Chen Y L. Iron & Steel, 2007(11), 1(in Chinese).
唐荻, 米振莉, 陈雨来. 钢铁, 2007(11), 1.
3 Zargaran A, Kim H S, Kwak J H, et al. Scripta Materialia, 2014, 89, 37.
4 Huang Z, Jiang Y, Hou A, et al. Journal of Materials Science & Techno-logy, 2017, 33(12), 1531.
5 Ren P, Chen X P, Mei L, et al. Materials Science and Engineering:A, 2020, 775, 138984.
6 Liu D, Ding H, Cai M, et al. Journal of Materials Engineering and Performance, 2019, 28(8), 5116.
7 Huang Z, Hou A, Jiang Y, et al. Journal of Iron and Steel Research International, 2017, 24(12), 1190.
8 Li Y P, Song R B, Wen E D, et al. Acta Metallurgica Sinica (English Letters), 2016, 29(5), 441.
9 Chen S, Rana R, Haldar A, et al. Progress in Materials Science, 2017, 89, 345.
10 Zambrano O A . Journal of Materials Science, 2018, 53(20), 14003.
11 Liu C Q, Peng Q C, Xue Z L, et al. Materials Reports, 2019, 33(15), 2572(in Chinese).
刘春泉, 彭其春, 薛正良, 等. 材料导报, 2019, 33(15), 2572.
12 Zhang X F, Li J X, Wang Y X, et al. Materials Reports, 2019, 33(23), 131(in Chinese).
章小峰, 李家星, 万亚雄, 等. 材料导报, 2019, 33(23), 131.
13 Ma T, Li H R, Gao J X, et al. Materials Reports, 2020, 34(11), 11153(in Chinese).
马涛, 李慧蓉, 高建新, 等. 材料导报, 2020, 34(11), 11153.
14 Han K H, Choo W K. Metallurgical Transactions A, 1989, 20(2), 205.
15 Drewes E J, Walker E F. In:Proceeding of the international symposium niobium 2001, TMS, Warrendale, PA, 2001, pp.873.
16 Han Y, Shi J, Xu L, et al. Materials & Design, 2012, 34, 427.
17 Tsukatani I, Hashimoto S I, Inoue T. ISIJ international, 1991, 31 (9), 992.
18 Huang F F, Zhu D Y, Wang M J, et al. Foundry Technology, 2011, 32(12), 1669(in Chinese).
黄芬芬, 朱定一, 王明杰, 等. 铸造技术, 2011, 32(12), 1669.
19 Piston M, Bartlett L, Limmer K R, et al. Metals, 2020, 10(10), 1305.
20 Drouven C, Song W, Bleck W . Steel Research International, 2019, 90(1), 1800440.
21 Guo Z, Hu F, Wang Z, et al. Materials Research Express, 2022, 9, 026512.
22 Lee D, Kim J K, Lee S, et al. Materials Science and Engineering:A, 2017, 706, 1.
23 Kuzmina M, Ponge D, Raabe D. Acta Materialia, 2015, 86, 182.
24 Kimura Y, Handa K, Hayashi K, et al. Intermetallics, 2004, 12(6), 607.
25 Min C H, Koo J M, Lee J K, et al. Materials Science & Engineering A Structural Materials Properties Microstructure & Processing, 2013, 586(1), 276.
26 Nakamura H, Shiga M. Physica B:Condensed Matter, 1997, 237, 453.
27 Buckholz S A. Missouri University of Science and Technology, 2013, 121, 495.
28 Sohn S S, Lee S, Lee B J, et al. JOM, 2014, 66(9), 1857.
29 Sato K, Tagawa K, Inoue Y. Materials Science and Engineering:A, 1989, 111, 45.
30 Sato K, Tagawa K, Inoue Y. Metallurgical and Transactions A, 1990, 21(1), 5.
31 Bartlett L N, Van Aken D C, Medvedeva J, et al. Metallurgical and Materials Transactions A, 2014, 45(5), 2421.
32 Cheng W C, Cheng C Y, Hsu C W, et al. Materials Science and Engineering:A, 2015, 642, 128.
33 Zhang J, Jiang Y, Zheng W, et al. Scripta Materialia, 2021, 199, 113836.
34 Kim S H, Kim H, Kim N J. Nature, 2015, 518(7537), 77.
35 Sohn S S, Lee B J, Lee S, et al. Acta Materialia, 2013, 61(13), 5050.
36 Seo C H, Kwon K H, Choi K, et al. Scripta Materialia, 2012, 66(8), 519.
37 Zhao C, Song R, Zhang L, et al. Materials & Design, 2016, 91, 348.
38 Hwang S W, Ji J H, Lee E G, et al. Materials Science and Engineering:A, 2011, 528(15), 5196.
39 Yoo J D, Hwang S W, Park K T. Materials Science and Engineering:A, 2009, 508(1-2), 234.
40 Lee K, Park S J, Choi Y S, et al. Scripta Materialia, 2013, 69(8), 618.
41 Yang F Q, Song R B, Li Y P, et al. Chinese Journal of Materials Research, 2015, 29(2), 108(in Chinese).
杨富强, 宋仁伯, 李亚萍, 等. 材料研究学报, 2015, 29(2), 108.
42 Zhang X F, Li J X, Wan Y X, et al. Materials Reports, 2021, 35(16), 16099(in Chinese).
章小峰, 李家星, 万亚雄, 等. 材料导报, 2021, 35(16), 16099.
43 Sohn S S, Choi K, Kwak J H, et al. Acta Materialia, 2014, 78, 181.
44 Ding H, Han D, Cai Z, et al. JOM, 2014, 66(9), 1821.
45 Zhi Q W, D Hua, Hua Y L, et al. Materials Science & Engineering A, 2013, 584(1), 150.
46 Yoo J, Hwang S, Park K T. Metallurgical and Materials Transactions A, 2009, 40, 1520.
47 Zhang Q C, Chen P, Shi F, et al. Proceedings of Chinese Materials Conference, 2021, pp.416(in Chinese).
张翘楚, 陈蓬, 石峰, 等. 中国材料大会2021论文集, 2021, pp.416.
48 Kimura Y, Handa K, Hayashi K, et al. Intermetallics, 2004, 12(6), 607.
49 Yang F Q, Song R B, Sun T, et al. Acta Metallurgica Sinica, 2014, 50(8), 897(in Chinese).
杨富强, 宋仁伯, 孙挺, 等. 金属学报, 2014, 50(8), 897.
50 Morris D G, Munoz-Morris M A, Requejo L M. Materials Science and Engineering:A, 2007, 460, 163.
51 Baligidad R G, Prasad K S . Materials Science and Technology, 2007, 23(1), 38.
52 Xu G, Gan X, Ma G, et al. Materials & Design, 2010, 31(6), 2891.
53 Altstetter C J, Bentley A P, Fourie J W, et al. Materials Science and Engineering, 1986, 82, 13.
54 Ding H, Li H, Misra R D K, et al. Steel Research International, 2018, 89(9), 1700381.
55 Zhou Z M, Tang D, Zhao Z Z, et al. Transactions of Materials and Heat Treatment, 2017, 38(9), 123(in Chinese).
周占明, 唐荻, 赵征志, 等. 材料热处理学报, 2017, 38(9), 123.
56 Wang Y H. Heat Treatment of Metals, 2019, 44(8), 185(in Chinese).
王英虎. 金属热处理, 2019, 44(8), 185.
57 Liu S Z, Li Y, Wang C X, et al. Heat Treatment of Metals, 2015, 40(9), 120(in Chinese).
刘少尊, 厉勇, 王春旭, 等. 金属热处理, 2015, 40(9), 120.
58 Howell R A, Van Aken D C. Iron and Steel Technology, 2009, 6(4), 193.
59 Wang P, Guo A M, Hou Q Y, et al. Chinese Journal of Materials Research, 2021, 35(3), 184(in Chinese).
王萍, 郭爱民, 侯清宇, 等. 材料研究学报, 2021, 35(3), 184.
60 Cheng W C, Cheng C Y, Hsu C W, et al. Materials Science and Engineering:A, 2015, 642, 128.
61 Liu S Z, Wang C X, Li Y, et al. Heat Treatment of Metals, 2015, 40(11), 103(in Chinese).
刘少尊, 王春旭, 厉勇, 等. 金属热处理, 2015, 40(11), 103.
62 Wu Z Q, Ding H, An X H, et al. Materials Science and Engineering:A, 2015, 639, 187.
63 Jeong J, Lee C Y, Park I J, et al. Journal of Alloys & Compounds, 2013, 574, 299.
64 Choi K, Seo C H, Lee H, et al. Scripta Materialia, 2010, 63(10), 1028.
65 Moon J, Park S J, Kim S D, et al. Journal of Alloys and Compounds, 2019, 804, 511.
66 Hwang Si Woo, Ji Jung Hoon, Lee Eui Gil, et al. Materials Science & Engineering A, 2011, 528, 5196.
67 Lee Keunho, Park Seong-Jun, Moon Joonoh, et al. Scripta Materialia, 2016, 124, 193.
68 Lee K, Park S J, Lee J, et al. Journal of Alloys and Compounds, 2016, 656, 805.
69 Gao Z Z, Cheng F C, Feng Y F, et al. Heat Treatment of Metals, 2021, 46(8), 115(in Chinese).
高志喆, 程福超, 冯一帆, 等. 金属热处理, 2021, 46(8), 115.
70 Kang L, Yuan H, Li H, et al. Frontiers in Materials, 2021, 8, 202.
71 Yuan X, Chen L, Zhao Y, et al. Journal of Materials Processing Techno-logy, 2015, 217, 278.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[14] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[15] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed