Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 22010026-5    https://doi.org/10.11896/cldb.22010026
  金属与金属基复合材料 |
304不锈钢在熔融多硫化钠中的高温腐蚀行为研究
姚艺, 任延杰*, 彭玉宬, 陈荐, 邱玮, 周立波
长沙理工大学能源与动力工程学院,长沙 410114
Study on High-temperature Corrosion Behavior of 304 Stainless Steel in Molten Sodium Polysulfide
YAO Yi, REN Yanjie*, PENG Yucheng, CHEN Jian, QIU Wei, ZHOU Libo
Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 16696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钠硫电池不锈钢集流体材料在熔融多硫化钠中易发生高温腐蚀,影响电池的性能并引发安全问题。本工作采用电化学阻抗谱技术研究了304不锈钢在350 ℃熔融多硫化钠熔盐中的高温腐蚀行为,结合微观组织分析,探索其高温腐蚀机理。结果表明,304不锈钢的电化学阻抗谱由高频段的容抗弧和低频段的直线组成,呈典型的扩散反应控制。电荷转移电阻较小,介于0.918~2.014 Ω·cm2之间,表明不锈钢的腐蚀速率较快。腐蚀产物层主要由外层的FeS2、FeNiS2和内层的Cr2S3组成。在腐蚀过程中,合金表面的产物膜经历生长、溶解与脱落的过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚艺
任延杰
彭玉宬
陈荐
邱玮
周立波
关键词:  钠硫电池  集流体  304不锈钢  电化学阻抗谱  高温腐蚀    
Abstract: The stainless steel current collector of sodium-sulfur batteries is prone to suffer high-temperature corrosion in molten sodium polysulfide, which affects the performance of the battery. In this work, the high-temperature corrosion behavior of 304 stainless steel molten sodium polysulfide molten salt at 350 ℃ was studied by electrochemical impedance spectroscopy (EIS). Combined with microstructure analysis, the high-temperature corrosion mechanism was investigated. Electrochemical impedance spectroscopy of 304 stainless steel corroded in the molten sodium polysulfide is composed of the capacitive arc in the high frequency zone and the straight line in the low frequency zone, which shows a typical diffusion controlled reaction. The charge transfer resistance is between 0.918 Ω·cm2 and 2.014 Ω·cm2, indicating that 304 stainless steel is apt to corrode in the molten sodium polysulfide. The corrosion scale is mainly composed of FeS2, FeNiS2 outer layer, and inner layer Cr2S3. During the corrosion process, the product film on the surface of the alloy undergoes growth, dissolution and shedding.
Key words:  sodium-sulfur battery    current collector    304 stainless steel    electrochemical impedance spectroscopy    high temperature corrosion
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51771034);湖南省自然科学基金(2020JJ4610)
通讯作者:  *任延杰,长沙理工大学教授,2001年6月毕业于长春工业大学获得工学学士学位,2004年6月毕业于长春工业大学获材料学硕士学位,2008年毕业于中国科学院金属研究所获材料学博士学位。主要从事动力设备的腐蚀与防护、金属的表面改性领域的研究。近年来在Corrosion Science、Journal of Power Sources、International Journal of Hydrogen Energy等国内外刊物上发表论文40余篇。参与完成国家“973”项目子课题1项。目前主持国家自然科学基金、湖南省自然科学基金项目等10余项;主编及参编专著各1部,申请并获批发明专利8项。yjren@csust.edu.cn   
作者简介:  姚艺,2019年6月本科毕业于长沙理工大学城南学院,获得工学学士学位,2019年9月进入长沙理工大学能源与动力工程学院攻读硕士,在任延杰教授的指导下主要从事金属的腐蚀与防护研究。
引用本文:    
姚艺, 任延杰, 彭玉宬, 陈荐, 邱玮, 周立波. 304不锈钢在熔融多硫化钠中的高温腐蚀行为研究[J]. 材料导报, 2023, 37(14): 22010026-5.
YAO Yi, REN Yanjie, PENG Yucheng, CHEN Jian, QIU Wei, ZHOU Libo. Study on High-temperature Corrosion Behavior of 304 Stainless Steel in Molten Sodium Polysulfide. Materials Reports, 2023, 37(14): 22010026-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010026  或          http://www.mater-rep.com/CN/Y2023/V37/I14/22010026
1 Hu Y Y, Wu X W, Wen Z Y. Energy Storage Science and Technology, 2021, 10(3), 781(in Chinese).
胡英瑛, 吴相伟, 温兆银. 储能科学与技术, 2021, 10(3), 781.
2 Toledo O M, Filho D O, Diniz A S A C. Renewable & Sustainable Energy Reviews, 2010, 14(1), 506.
3 Lu X C, Xia G G, Lemmon J P, et al. Journal of Power Sources, 2010, 195(9), 2431.
4 Cao J D. Battery Bimonthly, 1996(6), 276 (in Chinese).
曹佳弟. 电池, 1996(6), 276.
5 Qiu G W, Zeng Y C, Liu P. Joural of Shanghai Electirc Technology, 2011, 4(1), 54.
邱广玮, 曾乐才, 刘平. 上海电气技术, 2011, 4(1), 54(in Chinese).
6 Song S F, Yin W Y, Lu W. Dongfang Electric Review, 2011, 25(4), 28(in Chinese).
宋树丰, 阴宛珊, 卢苇. 东方电气评论, 2011, 25(4), 28.
7 Liu S L, Sun Y Z, Zhang M J, et al. Power Supply Technology, 2013, 37(8), 1481(in Chinese).
刘肃力, 孙洋洲, 张敏吉, 等. 电源技术, 2013, 37(8), 1481.
8 Huang P, Hong Y F, Zhu C F, et al. Plating and Finishing, 2016, 38(2), 6(in Chinese).
黄攀, 洪永飞, 朱承飞, 等. 电镀与精饰, 2016, 38(2), 6.
9 Knğdler R R. Journal of Applied Electrochemistry, 1988, 18(4), 653.
10 Bao J M, Xu Z C, Gong M G, et al. Power Supply Technology, 2018, 42(8), 1193(in Chinese).
鲍剑明, 徐中超, 龚明光, 等. 电源技术, 2018, 42(8), 1193.
11 Zhang X W, Li H C, Li S Y, et al. Petro-Chemical Equipment, 2019, 48(2), 12(in Chinese).
张学文, 李洪川, 李生云, 等. 石油化工设备, 2019, 48(2), 12.
12 Patel K, Sadeghilaridjani M, Pole M, et al. Solar Energy Materials and Solar Cells, 2021, 230(8), 111222.
13 Li J. Electrochemical impedance study of thermal corrosion of salt film of several metal materials. Ph. D. Thesis, Changsha University of Science and Technology, China, 2006 (in Chinese).
李杰. 几种金属材料的盐膜热腐蚀的电化学阻抗研究. 博士学位论文, 中国科学院金属研究所, 2006.
14 Hang B, Wang Y X, Wei F H, et al. Technology Innovation and Application, 2019(27), 29(in Chinese).
杭博, 王永霞, 魏飞虎, 等. 科技创新与应用, 2019(27), 29.
15 He Y W, Li Y C, Zhang H L, et al. Material Protection, 2016, 49(5), 18(in Chinese).
何玉武, 李宇春, 张宏亮, 等. 材料保护, 2016, 49(5), 18.
16 Sotelo-Mazon O, Cuevas-Arteaga C, Porcayo-Calderón J, et al. Current Analytical Chemistry, 2016, 12(6), 602.
17 Zhu M, Song Z, Zhang H, et al. Solar Energy Materials and Solar Cells, 2018, 186, 200.
18 Tian Y Q, Yuan Q Y, Fu A Q, et al. Materials Reports, 2021, 35(S2), 399.
田永强, 苑清英, 付安庆, 等. 材料导报, 2021, 35(S2), 399(in Chinese).
19 Song J, Bazant M Z. Journal of the Electrochemical Society, 2012, 160(1), A15.
20 Xu D F, Chen K H, Hu G Y, et al. Materials Reports, 2020, 34(8), 8100(in Chinese).
徐道芬, 陈康华, 胡桂云, 等. 材料导报, 2020, 34(8), 8100.
21 Li J, Zeng C L. Corrosion Science and Protection Technology, 2005, 17(1), 50 (in Chinese).
李杰, 曾潮流. 腐蚀科学与防护技术, 2005, 17(1), 50.
22 Wang F, Du X D, Wu C, et al. Surface Technology, 2014, 43(6), 16(in Chinese).
汪峰, 杜晓东, 吴辰, 等. 表面技术, 2014, 43(6), 16.
23 Xie F, Wang D, Wu M, et al. Materials Reports, 2017, 31(8), 51(in Chinese).
谢飞, 王丹, 吴明, 等. 材料导报, 2017, 31(8), 51.
24 Liu Q B, Liu Z D, Guo S Y, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6), 883(in Chinese).
刘泉兵, 刘宗德, 郭胜洋, 等. 中国腐蚀与防护学报, 2021, 41(6), 883.
25 Kinsman K R, Winterbottom W L. Thin Solid Films, 1981, 83(4), 417.
26 Yang Y X. Study on the microstructure and thermal corrosion properties of 316 stainless steel surface laser cladding FeCrAlSi coating. Master’s Thesis, North Central University, China, 2021 (in Chinese).
杨宜鑫. 316不锈钢表面激光熔覆FeCrAlSi涂层的组织及热腐蚀性能研究. 硕士学位论文, 中北大学, 2021.
[1] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[2] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[3] 王呼和, 新巴雅尔, 李晓杰. 爆炸冲击诱发AISI304不锈钢马氏体微观形貌研究[J]. 材料导报, 2022, 36(10): 20110061-6.
[4] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[5] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[6] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[7] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[8] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[9] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[10] 张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
[11] 王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
[12] 刘武, 鲁金涛, 黄锦阳, 党莹樱, 赵新宝, 赵麦群, 袁勇. 模拟烟灰/气腐蚀对Super304H钢高温持久性能的影响[J]. 材料导报, 2018, 32(16): 2787-2792.
[13] 邓云华, 岳喜山, 管志超. 304不锈钢消音蜂窝钎焊工艺、组织及力学性能分析[J]. 《材料导报》期刊社, 2018, 32(14): 2425-2430.
[14] 杨 丹,宁玉恒,赵宇光,朱国斌,徐晓峰. 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 《材料导报》期刊社, 2017, 31(24): 133-140.
[15] 蔡满园, 孙晓刚, 聂艳艳, 刘珍红, 邱治文, 陈珑. 基于纸纤维/晶须状碳纳米管/活性炭三元无金属集流体复合纸电极的柔性超级电容器*[J]. 《材料导报》期刊社, 2017, 31(16): 6-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed