Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21080193-7    https://doi.org/10.11896/cldb.21080193
  高分子与聚合物基复合材料 |
纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响
范雨生1,2, 王茹1,2,*
1 同济大学先进土木工程材料教育部重点实验室,上海 201804
2 同济大学材料科学与工程学院,上海 201804
Effect of Nano-silica on the Physical and Mechanical Properties of Styrene-butadiene Copolymer/Calcium Sulphoaluminate Cement Composite Mortar
FAN Yusheng1,2, WANG Ru1,2,*
1 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 3325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为厘清纳米二氧化硅(NS)和丁苯共聚物乳液(SB)在硫铝酸盐(CSA)水泥中的协同作用,同时解决SB/CSA水泥复合砂浆凝结时间长、抗压强度低的问题,采用NS和SB对CSA水泥砂浆进行复合改性,研究改性复合砂浆物理力学性能随NS掺量的变化,并通过测定水化放热及水化产物分析NS在SB/CSA水泥复合砂浆中的作用机制。结果表明:NS可有效缩短SB/CSA水泥复合砂浆的凝结时间,提高其抗压强度,并与SB对CSA水泥砂浆抗折强度提升具有协同作用;NS最佳掺量为1.5%,此时与不加NS的纯SB改性砂浆相比,28 d抗压和抗折强度分别提高了28%、30%。同时,掺入NS会降低复合砂浆的流动度,提高表观体积密度,降低含气量和干燥收缩率,并略微降低毛细孔吸水率。NS可通过促进无水硫铝酸钙和硫酸钙反应,进一步加快SB/CSA水泥复合浆体的水化进程,提高钙矾石的含量,从而缩短凝结时间并提高力学强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范雨生
王茹
关键词:  纳米二氧化硅  丁苯共聚物  硫铝酸盐水泥  物理力学性能    
Abstract: To clarify the interaction between nano-silica (NS) and styrene-butadiene copolymer emulsion (SB) in calcium sulphoaluminate (CSA) cement, and to solve the problem of prolonged setting time and reduced compressive strength of SB/CSA cement composite mortar, NS and SB were both used to modify CSA cement mortar. The change of physical and mechanical properties of modified mortar with the dosage of NS was studied, and the mechanism of NS in SB/CSA cement composite mortar was analyzed by hydration heat and hydration products analysis. The results show that NS can effectively shorten the setting time of SB/CSA cement composite mortar and increase the compressive strength, and has a synergistic effect with SB on the improvement of the flexural strength of CSA cement mortar. The optimal addition of NS is 1.5%, which can increase the 28 d compressive and flexural strength by 28% and 30% compared with pure SB modified mortar, respectively. Meanwhile, NS can also reduce the fluidity of the composite mortar, increase the density, reduce air content and the drying shrinkage, and slightly reduce the water capillary absorption. NS can further accelerate the hydration process of SB/CSA cement composite paste and increase the content of ettringite by promoting the hydration of ye'elimite and anhydrite, which can shorten the setting time and improve mechanical properties.
Key words:  nano-silica    styrene-butadiene copolymer    calcium sulphoaluminate cement    physical and mechanical property
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(51872203;51572196)
通讯作者:  *王茹,同济大学教授、博士研究生导师。1998年7月毕业于四川大学,获得高分子化工专业学士学位,2003年毕业于四川大学,获得材料学专业博士学位,先后在同济大学和奥地利维也纳工业大学进行博士后研究工作,回国后在同济大学工作至今,2010—2011年在美国哥伦比亚大学进行访问;兼任国际聚合物混凝土学会副理事长。主要从事聚合物水泥基复合材料的基础理论和工程应用研究,发表相关学术论文100余篇,多数被SCI和EI收录;主编Progress in Polymers in Concrete和《干混砂浆原材料及产品检测方法》等著作。ruwang@tongji.edu.cn   
作者简介:  范雨生,2018年6月毕业于北京建筑大学,获得工学学士学位。现在同济大学攻读硕士学位,主要从事聚合物改性水泥砂浆的研究。
引用本文:    
范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
FAN Yusheng, WANG Ru. Effect of Nano-silica on the Physical and Mechanical Properties of Styrene-butadiene Copolymer/Calcium Sulphoaluminate Cement Composite Mortar. Materials Reports, 2023, 37(9): 21080193-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080193  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21080193
1 Lu L C, Lu Z Y, Liu S Q, et al. Journal of Wuhan University of Technology (Materials Science), 2009, 24(6), 982.
2 Zhang D C, Xu D Y, Cheng X, et al. Journal of Wuhan University of Technology (Materials Science), 2009, 24(4), 663.
3 Cai G C, Zhao J. KSCE Journal of Civil Engineering, 2016, 20(7), 1.
4 Ali M B, Saidur R, Hossain M S. Renewable and Sustainable Energy Reviews, 2011, 15(5), 2252.
5 Juenger M C G, Winnefeld F, Provis J L. Cement and Concrete Research, 2011, 41(12), 1232.
6 Sharp J H, Lawrence C D. Advances in Cement Research, 1999, 11, 3.
7 Liao Y S, Wei X S, Li G W. Construction and Building Materials, 2011, 25(4), 1572.
8 Wang P M, Li N, Xu L L. Cement and Concrete Research, 2017, 100, 203.
9 Berger S, Coumes C C D, Bescop P L, et al. Cement and Concrete Research, 2011, 41(2), 149.
10 Zhang L, Glasser F P. Advances in Cement Research, 2002, 14(4), 141.
11 Zhang T. Influence of curing humidity and temperature on long-term pro-perties of styrene-butadiene copolymer dispersion/calcium sulphoaluminate cement. Master's Thesis, Tongji University, China, 2018 (in Chinese).
张韬. 温湿度对丁苯乳液/硫铝酸盐水泥砂浆长期性能的影响. 硕士学位论文, 同济大学, 2018.
12 Li L, Wang R, Lu Q Y. Construction and Building Materials, 2018, 169, 911.
13 Wang R, Li L, Xu Y D. Journal of Materials in Civil Engineering, 2019, 31(1), 04018344.
14 Guo X Y, Fan Y F, Yang K. Key Engineering Materials, 2017, 730, 406.
15 Wu Z, Shi C, Khayat K H. Cement and Concrete Composites, 2016, 70, 24.
16 Veraagullo J, Chozasligero V, Portillorico D. Nanotechnology in Construction 3, DOI:10. 1007/978-3-642-00980-8_52.
17 Wang R, Wan Q, Wang G Y. Materials Reports, 2019, 33(22), 3712 (in Chinese).
王茹, 万芹, 王高勇. 材料导报, 2019, 33(22), 3712.
18 Shi L. Journal of Functional Materials, 2022, 53(8), 8221(in Chinese).
师丽. 功能材料, 2022, 53(8), 8221.
19 Sikora P, Lukowski P, Cendrowski K, et al. Procedia Engineering, 2015, 108, 139.
20 Ma B G, Mei J P, Li H N, et al. Journal of Functional Materials, 2016, 47(2), 2010 (in Chinese).
马保国, 梅军鹏, 李海南, 等. 功能材料, 2016, 47(2), 2010.
21 Ma B G, Jiang W B, Mei J P, et al. Journal of Functional Materials, 2017, 48(3), 116 (in Chinese).
马保国, 姜文斌, 梅军鹏, 等. 功能材料, 2017, 48(3), 116.
22 Liu Y, Chen B, Qin Z. Construction and Building Materials, 2020, 264, 120728.
23 Jittabut P, Pinitsoontorn S, Thongbai P, et al. Chiang Mai Journal of Science, 2016, 43, 1160.
24 Behnia B, Safardoust-Hojaghan H, Amiri O, et al. Arabian Journal of Chemistry, 2021, 14(9), 103338.
25 Gao X. Experimental study on ultra high toughness cementitious compo-sites with nano-SiO2. Master's Thesis, Zhejiang University, China, 2016 (in Chinese).
高翔. 纳米SiO2改性超高韧性水泥基复合材料实验研究. 硕士学位论文, 浙江大学, 2016.
26 Li L, Wang R, Lu Q Y. Construction and Building Materials, 2018, 169, 911.
27 Tang S W, Zhu H G, Li Z J, et al. Construction and Building Materials, 2015, 75, 11.
28 He Z, Yang H, Liu M. Journal of Wuhan University of Technology (Materials Science Edition), 2014, 29(1), 70.
29 Li L, Peng Y, Wang R, et al. Journal of Thermal Analysis and Calorimetry, 2020, 139(1), 319.
30 Koga G Y, Albert B, Nogueira R P. Cement and Concrete Research, 2020, 137, 106215.
[1] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[2] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[5] 陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
[6] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[7] 徐玲琳, 杨肯, 穆帆远, 杨正宏, 薛伶俐. 纤维素醚对硫铝酸盐水泥浆体水组分及水化产物演变的影响[J]. 材料导报, 2022, 36(10): 21010095-6.
[8] 赵敏, 张明涛, 彭家惠, 黄谦, 赵亮. 硫铝酸盐水泥增强建筑石膏的力学性能与耐水性能机理[J]. 材料导报, 2021, 35(12): 12099-12102.
[9] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[10] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[11] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[12] 何欢, 杨荣俊, 文俊强, 唐芮枫, 王子明. 车桥耦合扰动对硫铝酸盐水泥混凝土修补材料性能的影响[J]. 材料导报, 2019, 33(Z2): 288-292.
[13] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[14] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[15] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed