Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12099-12102    https://doi.org/10.11896/cldb.20040229
  无机非金属及其复合材料 |
硫铝酸盐水泥增强建筑石膏的力学性能与耐水性能机理
赵敏1, 张明涛2, 彭家惠2, 黄谦1, 赵亮1
1 长江师范学院土木建筑工程学院,重庆 408100
2 重庆大学材料科学与工程学院,重庆 400045
Mechanisms for the Improvement of Mechanical Properties and Water Resistance of Building Gypsum by Sulphoaluminate Cement
ZHAO Min1, ZHANG Mingtao2, PENG Jiahui2, HUANG Qian1, ZHAO Liang1
1 School of Civil and Architectural Engineering,Yangtze Normal University, Chongqing 408100, China
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 3516KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石膏基胶凝材料的力学性能低、耐水性能差是限制其应用的主要原因。本工作通过复掺硫铝酸盐水泥,研究其对建筑石膏水化硬化进程及石膏硬化体力学性能与耐水性能的影响。结果表明,随着硫铝酸盐水泥掺量的增加,建筑石膏标准稠度需水量小幅降低,水化进程加速;10%水泥掺量时,石膏硬化体2 h与3 d的绝干抗折、抗压强度均大幅提升,2 h增幅高达34.8%、29.0%,3 d增幅高达28.8%、34.7%;同时饱水抗折强度由2.35 MPa提升至3.38 MPa,增幅高达43.8%,吸水率相应降低。XRD、SEM、MIP微观结构分析表明:硫铝酸盐水泥与建筑石膏复掺,水化生成针尖状的钙矾石(AFt)与无定形铝凝胶(AH3),AFt与针棒状二水石膏(DH)交织、穿插生长,在晶体之间发挥架桥、连接作用,同时AH3紧密填充在孔隙之间形成致密的晶胶结构中,石膏硬化体孔隙率降低,孔径明显细化,力学性能与耐水性能得到显著改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵敏
张明涛
彭家惠
黄谦
赵亮
关键词:  建筑石膏  硫铝酸盐水泥  力学性能  耐水性能    
Abstract: The bad mechanical strength and water resistance of gypsum are the limited factors for the use of gypsum-based productions. The hydration process of building gypsum, the mechanical strength and water resistance of dihydrate hardening were studied in this paper by the addition of SAC. The result showed that the water consumption of normal consistency was slightly declined and the hydration rate was accelarated by the growing of SAC. Meanwhile, the flexural strength and comprossive strength of 2 h and 3 d-dried were all significantly improved, the increase ra-tios of 2 h were high to 34.8% and 29.0%, while the ratios of 3 d were high to 28.8% and 34.7% with 10% SAC content, separately. In addition, the water saturated flexural strength was improved from 2.35 MPa to 3.38 MPa, the increase ratio was high to 43.8%. The water absorption was reduced. The microstructure was analized by XRD, SEM and MIP. It indicated that the more compact crystal structure was formed by the hydration products of the pinpoint AFt, the amorphous AH3 matrix by SAC, and the need-rob DH crystals by the hydration of building gypsum. AFt and DH crystals intergrowed to play an interconnect function between crystals while AH3 filled densely in the pores. The porosity was declined and the pore size was fined. Consequently, the mechnical properties and the water resistance were all remarkably enhanced.
Key words:  building gypsum    sulphoaluminate cement    mechanical property    water resistance property
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TQ177.3  
基金资助: 国家自然科学基金青年科学基金(51902034)
通讯作者:  zmt@cqu.edu.cn   
作者简介:  赵敏,长江师范学院,讲师,2015年获得重庆大学材料科学与工程专业博士学位。主要从事石膏基胶凝材料基础研究与工业固体废弃物资源化利用研究。
张明涛,重庆大学,助理研究员,2018年获得重庆大学材料科学与工程专业博士学位。主要致力于新型水泥基材料开发研究与危险废弃物处理等相关课题研究。
引用本文:    
赵敏, 张明涛, 彭家惠, 黄谦, 赵亮. 硫铝酸盐水泥增强建筑石膏的力学性能与耐水性能机理[J]. 材料导报, 2021, 35(12): 12099-12102.
ZHAO Min, ZHANG Mingtao, PENG Jiahui, HUANG Qian, ZHAO Liang. Mechanisms for the Improvement of Mechanical Properties and Water Resistance of Building Gypsum by Sulphoaluminate Cement. Materials Reports, 2021, 35(12): 12099-12102.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040229  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12099
1 Ge J R, Peng J H, Peng Z H, et al. Journal of Material Science and Engineering, 2016, 34(3), 413(in Chinese).
葛静冉, 彭家惠, 彭志辉, 等.材料科学与工程学报, 2016, 34(3), 413.
2 Fu J. Non-metallic Mines, 2019, 42(5), 39(in Chinese).
付建.非金属矿, 2019, 42(5), 39.
3 Wu B, Zhao Z M, Tian R, et al. Non-metallic Mines, 2018,41(5), 34(in Chinese).
毋博, 赵志曼, 田睿, 等.非金属矿, 2018,41(5), 34.
4 Yin M G, Wang H, Shi F T. Materials Veview, 2018, 32(S2),526(in Chinese).
尹明干, 汪晖, 石飞停.材料导报, 2018, 32(专辑32), 526.
5 Zhu L P. Industrial Minerals and Processing, 2020(3), 48(in Chinese).
朱丽苹.化工矿物与加工, 2020(3), 48.
6 Zhao M, Peng J H, Zhang M T, et al. Journal of Hunan University (Nature Sciences), 2014, 41(12), 46(in Chinese).
赵敏, 彭家惠, 张明涛, 等.湖南大学学报(自然科学版), 2014, 41(12), 46.
7 Zhao M, Peng J H, Zhang M T, et al. Journal of Southeast University (Nature Science Edition), 2014, 44(5), 1030 (in Chinese).
赵敏, 彭家惠, 张明涛, 等.东南大学学报(自然科学版),2014, 44(5), 1030.
8 Wang S, Chang J, Ji J. Cement Engineering, 2018(5), 4(in Chinese).
王硕, 常钧, 季娟.水泥工程, 2018(5), 4.
9 Lv X J. New Building Materials, 2019(7), 53(in Chinese).
吕晓娟.新型建筑材料, 2019(7), 53.
10 Zhu D L, Pan Y H, Peng J H, et al. Materials Review B: Research Papers, 2015, 29(3), 135 (in Chinese).
朱登玲, 潘玉会, 彭家惠, 等.材料导报:研究篇, 2015, 29(3), 135.
[1] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[2] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[3] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[4] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[5] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[6] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[7] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[8] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[9] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[10] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[11] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[12] 胡聪, 应国兵, 刘璐, 孙铖, 文栋, 张建峰, 张晨, 王香, 王乘. 放电等离子烧结制备高纯Ta2AlC陶瓷及其高温氧化行为[J]. 材料导报, 2021, 35(12): 12044-12048.
[13] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[14] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[15] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed