Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3712-3719    https://doi.org/10.11896/cldb.18100003
  无机非金属及其复合材料 |
纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响
王茹1,2,,万芹1,王高勇1
1 同济大学材料科学与工程学院,上海 201804
2 同济大学先进土木工程材料教育部重点实验室,上海 201804
Effect of Nano-silica on the Setting and Hardening Process of Styrene-acrylic Ester/Cement Composite Cementitious Material
WANG Ru1,2, WAN Qin1, WANG Gaoyong1
1 School of Materials Science and Engineering, Tongji University, Shanghai 201804
2 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 1962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用纳米二氧化硅作为调凝物质以期解决苯丙共聚物/水泥复合胶凝材料凝结硬化慢的问题。通过测定纳米二氧化硅改性苯丙共聚物/水泥复合胶凝材料的凝结时间及早期强度,分析纳米二氧化硅对复合胶凝材料凝结硬化过程的影响;采用等温量热法测定纳米二氧化硅改性苯丙共聚物/水泥的水化热,并采用X射线衍射仪对其水化产物进行表征;综合以上分析结果探讨纳米二氧化硅的作用机制。结果表明:掺入二氧化硅能有效促进复合胶凝材料的凝结硬化,二氧化硅掺量为1.25%时促进作用最为显著;掺入纳米二氧化硅可促进铝酸三钙和硅酸三钙的水化,加快钙钒石和氢氧化钙的生成,缩短复合胶凝材料的水化诱导期和加速期,加快水泥水化进程,从而缩短凝结时间,提高早期强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王茹
万芹
王高勇
关键词:  水泥  苯丙共聚物  纳米二氧化硅  凝结硬化  水化    
Abstract: To solve the problem of retardation existing in the setting and hardening process of styrene-acrylic ester/cement (SAE-cement) composite cementitious material, nano-silica served as setting modifying admixture in this work. By measuring the setting time and initial strength of nano-silica modified SAE-cement composite cementitious material, the effect of nano-silica on the setting and hardening process of composite cementitious material was analyzed. To explore the work mechanism of nano-silica, the hydration heat of nano-silica modified SAE-cement composite cementitious material was determined by isothermal calorimetry, and its hydration products were examined by X-ray diffraction. The results show that the addition of nano-silica can effectively promote the setting and hardening process of composite cementitious materials, and the effect of 1.25% dosages is the most significant. It also indicates that adding nano-silica accelerates the formation of ettringite and calcium hydroxide by promoting the hydration of tricalcium aluminate and tricalcium silicate, shortens the hydration induction period and acceleration period of the composite cementitious material, accelerates the hydration process, thereby shortening the setting time and increasing the early strength.
Key words:  cement    styrene-acrylic ester    nano-silica    setting and hardening    hydration
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TU528.41  
基金资助: 国家自然科学基金(51572196;51872203);中德科学中心资助项目(GZ1290)
作者简介:  王茹,同济大学教授,博士研究生导师。2003年毕业于四川大学获材料学专业博士学位,先后在同济大学和奥地利维也纳工业大学进行博士后研究工作,回国后在同济大学工作至今。其中2010—2011年在美国哥伦比亚大学土木工程与工程力学系进行访问。主要从事聚合物水泥基复合材料的基础理论和工程应用研究,重点研究聚合物改性水泥基材料的化学反应过程,探讨其与材料微观结构演变的关系和对材料物理力学性能的影响规律,并从科学、安全、环保等角度提出合理利用聚合物制备建筑用新型水泥基功能材料的可行性。在国家自然科学基金等科学基金的资助下,在该研究领域取得了丰硕的成果,她先后发表聚合物水泥基复合材料相关学术论文100余篇,其中多数被SCI和EI收录;主编Progress in Polymers in Concrete,合编《干混砂浆原材料及产品检测方法》,参编《商品砂浆》等著作。研究的新发现和新见解引起国际同行的关注,多次受邀在国际学术会议上作特邀报告和主题报告,受任国际聚合物混凝土学会理事会多年。2018年,她荣获了国际聚合物混凝土学会颁发的“欧文纳特奖”(Owen Nutt Award),并被推选为国际聚合物混凝土学会理事会副理事长。
引用本文:    
王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
WANG Ru, WAN Qin, WANG Gaoyong. Effect of Nano-silica on the Setting and Hardening Process of Styrene-acrylic Ester/Cement Composite Cementitious Material. Materials Reports, 2019, 33(22): 3712-3719.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100003  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3712
[1] Shi H X, Kong X M, Fan D K, et al. Building Decoration Materials World, 2010(9),60(in Chinese).师海霞, 孔祥明, 范德科,等.混凝土世界, 2010(9),60.
[2] Zhu M S. Technology Wind, 2010(19),224(in Chinese).朱明胜.科技风, 2010(19),224.
[3] Wang P M, Liu E G. Journal of Building Materials, 2009, 12(3),253(in Chinese).王培铭, 刘恩贵.建筑材料学报, 2009, 12(3),253.
[4] Kong X, Li Q. Journal of the Chinese Ceramic Society, 2009, 37(1),107.
[5] Wang R, Wang P. Materials & Structures, 2010, 43(4),443.
[6] Pang Z K, Zhang J. China Building Waterproofing, 2015(12),7(in Chinese).潘正凯, 张军.中国建筑防水, 2015(12),7.
[7] Zhang S, Li G Z, Ning C. Advanced Materials Research, 2011, 194-196,1022.
[8] Zhang S, Yu Y, Ning C, et al. China Concrete and Cement Products, 2010(2),9(in Chinese).张水, 于洋, 宁超,等.混凝土与水泥制品, 2010(2),9.
[9] Xing X G, Bai E L, Wang Y X. Bulletin of the Chinese Ceramic Society, 2018(4),1174 (in Chinese).邢小光, 白二雷, 王谕贤.硅酸盐通报, 2018(4),1174.
[10] He X Y. Mortar Subgrade Engineering, 2017(4),136(in Chinese).贺晓宇.路基工程, 2017(4),136.
[11] Zhang H B, Wang C, Li D L, et al. Bulletin of the Chinese Ceramic So-ciety, 2014, 33(1),164(in Chinese).张洪波, 王冲, 李东林,等.硅酸盐通报, 2014, 33(1),164.
[12] Wang R, Wang P M. Journal of Building Materials, 2008, 11(4),464(in Chinese).王茹, 王培铭.建筑材料学报, 2008, 11(4),464.
[13] Shi B, Deng P, Xing X. In: 2nd International Conference on Civil Engineering and Rock Engineering. Guangzhou, 2017, pp. 225.
[14] Zhong S Y, Tan M H, Chen Z Y. Journal of Building Materials, 2002, 5(4),393(in Chinese).钟世云, 谈慕华, 陈志源.建筑材料学报, 2002, 5(4),393.
[15] Gemert D V, Beeldens A. Advanced Materials Research, 2013, 687,291.
[16] Lu Z C, Kong X M, Zhang Q, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 507,46.
[17] Wang R, Li J, Zhang T, et al. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64(4),785.
[18] Kong X M, Emmerling S, Pakusch J, et al. Cement & Concrete Research, 2015, 75,23.
[19] Wang R, Yao L J, Wang P M. Construction & Building Materials, 2013, 41(41),538.
[20] Wang R, Shi X X. Advances in Materials Science & Engineering, 2014, 2014(4),1.
[21] Lu Z C, Kong X M, Zhang C Y, et al. Construction & Building Mate-rials, 2017, 155,1147.
[22] Wang R, Wang G Y. Construction & Building Materials, 2016, 125, 757.
[23] Thomas J J, Jennings H M, Chen J J. The Journal of Physical Chemistry C, 2009, 113(11), 4327.
[24] Land G, Stephan D. Journal of Materials Science, 2012, 47(2),1011.
[25] Rupasinghe M, Nicolas R S, Mendis P, et al. In: 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23). Byron Bay, 2014, pp. 131.
[26] Bosque I F S D, Ramírez S M, Blancovarela M T. Materiales De Construcción, DOI: 10.3989/mc.2015.06814
[27] Senff L, Labrincha J A, Ferreira V M, et al. Construction & Building Materials, 2009, 23(7),2487.
[28] Madani H, Bagheri A, Parhizkar T. Cement & Concrete Research, 2012, 42(12),1563.
[29] Xu X, Lu Z Y. Journal of Nanjing University of Technology (Natural Science Edition), 2007, 29(4), 45(in Chinese).徐迅, 卢忠远.南京工业大学学报(自然科学版), 2007, 29(4), 45.
[30] Fan J J, Sun Z H, Chen R G, et al. Journal of Guangxi University: Na-tural Science Edition, 2009, 34(2), 158(in Chinese).范基骏, 孙中华, 陈日高,等.广西大学学报(自然科学版), 2009,34(2), 158.
[31] Kong X M, Lu Z C, Zhang C Y. Journal of the Chinese Ceramic Society, 2017, 45(2), 274(in Chinese).孔祥明, 卢子臣, 张朝阳.硅酸盐学报, 2017, 45(2), 274.
[32] Jansen D, Goetz-Neunhoeffer F, Lothenbach B, et al. Cement & Concrete Research, 2012, 42(1),134.
[33] Wang P M, Feng S X, Liu X P. Journal of Building Materials, 2005, 8(6), 646(in Chinese).王培铭, 丰曙霞, 刘贤萍.建筑材料学报, 2005, 8(6), 646.
[34] Yang N R, Yue W H. Handbook of a collection of illustrative plates of inorganic nonmetal materials, Wuhan University of Technology Press, China, 2000(in Chinese).杨南如, 岳文海. 无机非金属材料图谱手册, 武汉工业大学出版社, 2000.
[1] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[4] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[5] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[6] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[7] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[8] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[9] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[10] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[11] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21): 3620-3629.
[12] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[13] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[14] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[15] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed