Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21110028-6    https://doi.org/10.11896/cldb.21110028
  金属与金属基复合材料 |
深冷处理工艺对M2高速钢显微组织与性能的影响
胡海波1, 朱丽慧1,*, 涂有旺1, 段元满1, 吴晓春1, 顾炳福2
1 上海大学材料科学与工程学院,上海 200444
2 江苏省福达特种钢有限公司,江苏 扬中 212200
Influence of Deep Cryogenic Treatment Process on Microstructure and Properties of M2 High Speed Steel
HU Haibo1, ZHU Lihui1,*, TU Youwang1, DUAN Yuanman1, WU Xiaochun1, GU Bingfu2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Jiangsu Fuda Special Steel Co., Ltd., Yangzhong 212200, Jiangsu, China
下载:  全 文 ( PDF ) ( 3946KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对M2高速钢进行不同时间或循环三次的深冷处理,然后测量深冷处理前后试样的硬度、冲击韧性以及高温摩擦磨损性能,结合X射线物相分析、扫描和透射电子显微分析技术研究深冷处理工艺对M2高速钢硬度、红硬性、冲击韧性、高温耐磨性和组织的影响及机理。结果表明:深冷处理后,残余奥氏体含量降低,一次共晶碳化物分解,二次碳化物弥散析出,并且孪晶马氏体细化。因此,深冷处理后M2高速钢的室温硬度、红硬性、冲击韧性和高温耐磨性均得到提高。延长深冷时间和循环深冷处理均利于提升M2高速钢的性能。循环三次深冷后M2高速钢的显微组织的改善和性能的提升最明显。较未深冷试样,循环三次深冷后试样残余奥氏体含量降低50%,大尺寸一次碳化物数量减少75.2%,二次碳化物析出增加约296%,室温硬度提高2.27%,红硬性提高2.7%,冲击韧性提高15.6%,高温相对耐磨性提高140%。与一次长时间深冷相比,循环深冷处理在提升性能和降低成本方面更有优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡海波
朱丽慧
涂有旺
段元满
吴晓春
顾炳福
关键词:  M2高速钢  深冷处理  显微组织  力学性能  耐磨性    
Abstract: The M2 high speed steel was cryogenically treated for different time or repeated for three cycles, and the influence and mechanism of deep cryogenic treatment on the hardness, red hardness, impact toughness, wear resistance at high temperature and microstructure of M2 high speed steel were studied by measuring hardness, impact toughness and high-temperature friction and wear property combined with X-ray phase analysis, scanning electron microscopic analysis and transmission electron microscopic analysis. The results showed that after deep cryogenic treatment, the amount of retained austenite reduced, the primary eutectic carbides decomposed, the secondary carbides precipitated dispersedly, and the twin martensite was thinned in M2 high speed steel. Therefore, the hardness, red hardness, impact toughness and high temperature wear resistance improved. The prolonging of deep cryogenic time and cyclic cryogenic treatment were beneficial to improving the properties. The microstructure and properties of M2 steel were improved most significantly after deep cryogenic treatment for three times. Compared with the specimen without deep cryogenic treatment, the specimen after deep cryogenic treatment for three times led to 50% reduction in retained auste-nite, 75.2% reduction in large-sized primary carbides and 296% increase in secondary carbides. Consequently, after deep cryogenic treatment for three times, the room temperature hardness increased 2.27%, red hardness increased 2.7%, impact toughness increased 15.6%, and relative wear resistance at high temperature increased 140%. Hence cyclic deep cryogenic treatment is more beneficial for property improvement and cost reduction compared with the long-time deep cryogenic treatment.
Key words:  M2 high speed steel    deep cryogenic treatment    microstructure    mechanical property    wear resistance
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TG430.40  
基金资助: 国家重点研发计划(2016YFB0300403);镇江“金山英才”计划;江苏省高层次创新创业人才引进计划
通讯作者:  *朱丽慧,上海大学教授、博士研究生导师。1998年毕业于西安交通大学,获博士学位。主要从事超临界、超超临界锅炉用耐热钢和硬质合金刀具涂层等相关领域的研究。近三年在Metallurgical and Materials Transactions A、Materials Science and Engineering A、Surface & Coatings Technology等期刊发表学术论文20余篇,申请发明专利1项。与他人合著出版专著一部。lhzhu@i.shu.edu.cn   
作者简介:  胡海波,上海大学硕士研究生,2020年于济南大学获得学士学位,主要从事高速钢组织和性能方面的研究。
引用本文:    
胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
HU Haibo, ZHU Lihui, TU Youwang, DUAN Yuanman, WU Xiaochun, GU Bingfu. Influence of Deep Cryogenic Treatment Process on Microstructure and Properties of M2 High Speed Steel. Materials Reports, 2023, 37(9): 21110028-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110028  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21110028
1 Gill S S, Singh J, Singh R, et al. International Journal of Advanced Manufacturing Technology, 2011, 54(1), 59.
2 Podgornik B, Paulin I, Zajec B, et al. Journal of Materials Processing Technology, 2016, 229, 398.
3 Li J, Yan X, Liang X, et al. Wear, 2017, 376, 1112.
4 Dong L, Yan X G, Chen Z, et al. Heat Treatment of Metals, 2018, 43(12), 144 (in Chinese).
董良, 闫献国, 陈峙, 等. 金属热处理, 2018, 43(12), 144.
5 Duan Z C, Wang M J, Li S Y. Journal of Materials Engineering, 2008(6), 43 (in Chinese).
段春争, 王敏杰, 李士燕. 材料工程, 2008(6), 43.
6 Ai Z R, Wu H Y, Yu K, et al. Special Steel, 2019, 40(6), 60 (in Chinese).
艾峥嵘, 吴红艳, 于凯, 等. 特殊钢, 2019, 40(6), 60.
7 Dong Y, Li Z C. Heat Treatment of Metals, 1997(9), 3 (in Chinese).
董允, 李智超. 金属热处理, 1997(9), 3.
8 Lyu Y W, Yan X G, Han X J, et al. Heat Treatment of Metals, 2015, 40(10), 4 (in Chinese).
吕雁文, 闫献国, 韩晓君, 等. 金属热处理, 2015, 40(10), 4.
9 Li J G. Hot Working Technology, 2016, 45(22), 4 (in Chinese).
李建国. 热加工工艺, 2016, 45(22), 4.
10 Ai Z R, Yu K, Wu H Y, et al. Chinese Journal of Stereology and Image Analysis, 2020, 25(4), 6(in Chinese).
艾峥嵘, 于凯, 吴红艳, 等. 中国体视学与图像分析, 2020, 25(4), 6.
11 Duan Y M, Zhu L H, Wu X C, et al. Chinese Journal of Materials Research, 2021, 35(1), 8 (in Chinese).
段元满, 朱丽慧, 吴晓春, 等. 材料研究学报, 2021, 35(1), 8.
12 Das D, Dutta A K, Ray K K. Materials Science and Technology, 2009, 25(10), 1249.
13 Das D, Ray K K, Dutta A K. Wear, 2009, 267(9), 1361.
14 Yan X G, Li D Y. Wear, 2013, 302(1), 854.
15 Shang R. Hot Working Technology, 2016, 45(2), 167 (in Chinese).
商茹. 热加工工艺, 2016, 45(2), 167.
16 Duan C Z, Wang M J. Journal of Iron and Steel Research, 2008, 20(8), 38 (in Chinese).
段春争, 王敏杰. 钢铁研究学报, 2008, 20(8), 38.
17 Zhou L Q, Min N, Li H M. Heat Treatment and Surface Engineering, 2020, 1(3), 1.
18 Li S Y, Liu T Z, Li G. Materials Reports, 2003, 17(8), 80 (in Chinese).
李士燕, 刘天佐, 李钢. 材料导报, 2003, 17(8), 80.
19 Gu B, Cong J Y. Journal of Dalian University of Technology, 1997(3), 43 (in Chinese).
顾彪, 丛吉远. 大连理工大学学报, 1997(3), 43.
20 Fan S, Hao H, Meng L, et al. Materials Science and Engineering:A, 2021, 810, 141022.
21 Wen S Z, Huang P. Principles of tribology, Tsinghua University Press, China, 2012 (in Chinese).
温诗铸, 黄平. 摩擦学原理, 清华大学出版社, 2012.
22 Li X, Li S Y, Zhang H B. Journal of Shanghai Jiao Tong University, 2002(7), 905 (in Chinese).
李雄, 李士燕, 张鸿冰. 上海交通大学学报, 2002(7), 905.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[4] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[5] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[13] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed