Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21100079-4    https://doi.org/10.11896/cldb.21100079
  金属与金属基复合材料 |
Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响
陈磊1, 徐荣正1, 张利1, 刘亚光1, 李正坤2, 张海峰2, 张波1,*
1 沈阳航空航天大学材料科学与工程学院,沈阳 110136
2 中国科学院金属研究所,沈阳 110016
Effects of Zr-based Amorphous Alloy Interlayer on Microstructure and Properties of Al/TA1 Dissimilar Metals Electron Beam Welded Joints
CHEN Lei1, XU Rongzheng1, ZHANG Li1, LIU Yaguang1, LI Zhengkun2, ZHANG Haifeng2, ZHANG Bo1,*
1 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 3720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 影响钛/铝异种金属电子束焊(Electron beam welding,EBW)接头强度的主要因素是界面处连续分布的脆性Ti-Al金属间化合物(Intermetallic compounds,IMCs)的种类、分布和厚度。本工作针对TA1钛合金和工业高纯Al的EBW,采用厚度为40~45 μm的Zr52Cu32Ni6Al10非晶条带作为预置夹层,分析夹层材料的添加对接头组织和性能的影响。结果表明:异种金属直接焊接时,焊缝组织全部由Ti-Al IMCs组成,厚度为1~1.5 mm,焊接接头的抗拉强度仅为40.5 MPa,呈脆性断裂特征。添加非晶夹层后,在靠近TA1一侧形成一层厚度为3~5 μm的连续IMCs层,而靠近Al侧未产生连续反应层,只在熔化区内存在弥散分布的细小IMCs,焊接接头抗拉强度为90.9 MPa,达到Al母材强度的94%左右,拉伸断裂位置位于焊缝附近近Al侧,断口处有明显颈缩现象,呈韧性断裂特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈磊
徐荣正
张利
刘亚光
李正坤
张海峰
张波
关键词:  Zr基非晶合金  Al/TA1异种金属  电子束焊接  微观组织  力学性能    
Abstract: The main factors affecting the strength of titanium/aluminum dissimilar metal EBW are the type, distribution and thickness of brittle Ti-Al intermetallic compounds continuously distributed at the interface. This work focused on the EBW of TA1 titanium alloy and industrial high purity Al. The Zr52Cu32Ni6Al10 amorphous strip with the thickness of 40—45 μm was used as the preset interlayer. The effect of the addition of interlayer material on the microstructure and properties of the weldments were analyzed. The results show that the weld structure of Al/TA1 weldments without interlayer is all composed of Ti-Al IMCs. The thickness of the IMCs layer is 1—1.5 mm. The tensile strength of the welded joint is only 40.5 MPa, and the fracture mode is brittle fracture. However, after introducing Zr-based metallic glass interlayer, a continuous IMCs layer with the thickness of 3—5 μm is formed on the TA1 side. On the Al side, there are only dispersed IMCs, but no continuous reaction layer is generated in the melting zone. The tensile strength of the weldment is 90.9 MPa, reaching about 94% of the strength of Al base metal. The tensile fracture is located near the Al side, which is near the weld zone, and there is obvious necking at the fracture, showing the characteristics of ductile fracture.
Key words:  Zr-based amorphous alloy    Al/TA1 dissimilar metal    electron beam welding    microstructure    mechanical property
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG456.3  
基金资助: 国家自然科学基金(51601121);辽宁省自然科学基金(2020-MS-238);辽宁省“兴辽英才计划”项目(XLYC2007165)
通讯作者:  *张波,沈阳航空航天大学材料科学与工程学院副教授、硕士研究生导师。2013年大连理工大学材料学专业博士毕业后到沈阳航空航天大学工作至今。目前主要从事非晶合金及其复合材料的结构、性能和应用方面的研究工作。发表学术论文20余篇。zhangb@alum.imr.ac.cn   
作者简介:  陈磊,2013年7月毕业于沈阳航空航天大学,获得工学学士学位。现为沈阳航空航天大学材料科学与工程学院硕士研究生,在张波副教授的指导下进行研究。目前主要研究领域为非晶合金的应用。
引用本文:    
陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
CHEN Lei, XU Rongzheng, ZHANG Li, LIU Yaguang, LI Zhengkun, ZHANG Haifeng, ZHANG Bo. Effects of Zr-based Amorphous Alloy Interlayer on Microstructure and Properties of Al/TA1 Dissimilar Metals Electron Beam Welded Joints. Materials Reports, 2023, 37(8): 21100079-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100079  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21100079
1 Guo S, Peng Y, Cui C, et al. Vacuum, 2018, 154, 58.
2 Chen S H, Huo X C, Guo C X, et al. Journal of Materials Processing Technology, 2019, 263, 73.
3 Casalino G, Mortello M, Peyre P. Journal of Materials Processing Technology, 2015, 223, 139.
4 Casalino G, Sonia D, Pasquale G, et al. Materials, 2018, 11, 2337.
5 Tomashchuk I, Sallamand P, Cicala E, et al. Journal of Materials Processing Technology, 2015, 217, 96.
6 Malikov A, Vitoshkin I, Orishich A, et al. Optics and Laser Technology, 2020, 126, 1.
7 Tomashchuk I, Sallamand P, Méasson A, et al. Journal of Materials Processing Technology. 2017, 245, 24.
8 Wang G Y, Liaw P K, Morrison M L. Intermetallics, 2009, 17, 579.
9 Shoji T, Kawamura Y, Ohno Y. Materials Transactions, 2003, 44, 1809.
10 Swiston A J, Hufnagel T C, Weihs T P. Scripta Materialia, 2003, 48, 1575.
11 Wang D Z, Li N, Liu L. Intermetallics, 2018, 93, 180.
12 Liang H L, Luo N, Li X J, et al. Journal of Manufacturing Processes, 2019, 45, 115.
13 Jonghyun K, Kawamura Y. Scripta Metallurgica, 2006, 56, 709.
14 Boroński D, Kotyk M, Maćkowiak P. Procedia Structural Integrity, 2016, 2, 3764.
15 Kar A, Choudhury S K, Suwas S, et al. Materials Characterization, 2018, 145, 402.
16 Dong Y W, Li X L, Zhao Q, et al. Journal of Materials Processing Technology, 2017, 244, 190.
17 Guo S, Peng Y, Zhu J, et al. Chinese Journal of Lasers, 2018, 45(11), 102(in Chinese).
郭顺, 彭勇, 朱军,等. 中国激光, 2018, 45(11), 102.
18 Chen X, Lei Z L, Chen Y B, et al. Journal of Manufacturing Processes, 2020, 56, 19.
19 Zhang Y X, Zhao H D, Zhu L, et al. Chinese Journal of Materials Research, 2021, 35(3), 209(in Chinese).
张云翔, 赵海东, 朱霖,等. 材料研究学报, 2021, 35(3), 209.
20 Li L, Delaey L, Wollants P, et al. Journal de Chimie Physique et de Physico-Chimie Biologique, 1993, 90, 175.
21 Takeuchi A, Inoue A. Materials Transactions, 2005, 46, 2817.
22 Wu A P, Song Z H, Nakata K, et al. Materials and Design, 2014, 71, 85.
23 Chen Y B, Chen S H, Li L Q. Materials and Design, 2010, 31, 227.
24 Song Z H, Nakata K, Wu A P, et al. Materials Science and Engineering A, 2013,560,111.
[1] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[2] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[3] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[4] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[5] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[6] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[7] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[8] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[9] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[10] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[11] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[12] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[13] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[14] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[15] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed