Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21100176-7    https://doi.org/10.11896/cldb.21100176
  金属与金属基复合材料 |
危废处理超临界水氧化环境中装置材料腐蚀的研究进展
陈思雨1, 张弦1,*, 李腾2,*, 刘静1, 吴开明1
1 武汉科技大学,耐火材料与冶金省部共建重点实验室,高性能钢铁材料及其应用省部共建协同创新中心,冶金工业工程系统科学湖北省重点实验室,武汉 430081
2 中国原子能科学研究院放射化学研究所,北京 102413
Research Progress on Corrosion Behavior of Reactor Plant Materials in Supercritical Water Oxidation Environment of Hazardous Waste Treatment
CHEN Siyu1, ZHANG Xian1,*, LI Teng2,*, LIU Jing1, WU Kaiming1
1 State Key Laboratory of Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
2 Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 2475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超临界水氧化技术处理废物具有去除效率高、停留时间短、不产生污染物和副产物等特点,但由其苛刻的反应条件造成的设备腐蚀问题亟待解决。尤其当反应环境为酸性及反应物料中含有卤族元素时,腐蚀极其严重。目前主要利用镍基合金、钛合金和不锈钢等合金材料制造反应器,但全面及局部腐蚀仍易发生,严重时可能造成反应器泄漏甚至爆炸。因此,近年来研究者们主要针对不同合金在不同类型超临界水氧化环境中的腐蚀行为进行深入分析,并提出了有效的防护措施。本文归纳整理了亚临界和超临界环境下,镍基合金和钛合金在含氯离子酸性溶液、硫酸溶液和磷酸溶液中的腐蚀行为,以及不锈钢在含氯离子酸性溶液和含H2O2溶液中的腐蚀机理;总结了全面腐蚀、点蚀、晶间腐蚀以及应力腐蚀开裂在不同温区及反应器位置的产生情况;综述了目前危废处理超临界水氧化环境中常用的衬垫和涂层等腐蚀防护措施;最后展望了通过表面纳米化技术获得超细晶合金材料来提高耐蚀性的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈思雨
张弦
李腾
刘静
吴开明
关键词:  超临界水氧化  耐蚀合金  腐蚀行为  防护措施  高温高压    
Abstract: Supercritical water oxidation technology for waste treatment has the characteristics of high removal efficiency, short residence time and no pollutant and by-products, but because of its harsh reaction conditions, corrosion problems of equipment urgently need to be solved. Especially when the reaction environment is acidic and the reaction materials contain halogen elements, the corrosion is extremely serious. At present, nickel base alloy, titanium alloy, stainless steel and other alloy materials are mainly used to manufacture reactors, but overall and local corrosion is still prone to occur, and may cause reactor leakage or even explosion in serious cases. Therefore, in recent years, researchers have carried out in-depth analysis on the corrosion behavior of different alloys in different types of supercritical water oxidation environment, and then put forward effective protection measures.In this paper, the corrosion behavior and mechanism of nickel base alloy and titanium alloy in acidic solution containing chloride ion, sulfuric acid solution and phosphoric acid solution, as well as stainless steel in acidic solution containing chloride ion and H2O2 solution under subcritical and supercritical conditions are summarized. The occurrence of overall corrosion, pitting corrosion, intergranular corrosion and stress corrosion cracking at different temperature zones and reactor locations are summarized. Corrosion protection measures such as liner and coating used in supercritical water oxidation (SCWO) environment of hazardous waste treatment are reviewed. Finally, the development prospect of improving corrosion resistance of superfine alloy materials by surface nanocrystalline technology is prospected.
Key words:  supercritical water oxidation    corrosion resistant alloy    corrosion behavior    protection measure    high temperature and high pressure
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TB304  
基金资助: 国家自然科学基金(51601138;51601137)
通讯作者:  *张弦,武汉科技大学副教授、硕士研究生导师。2014年9月博士毕业于瑞典皇家理工学院表面与腐蚀科学专业。主要研究方向为金属材料在苛刻环境下的腐蚀机理及其防护措施。以第一或通信作者身份在国际高水平学术期刊发表论文20余篇,包括Corrosion Science、Applied Surface Science等。xianzhang@wust.edu.cn
李腾,中国原子能科学研究院助理研究员。2015年大连理工大学化学工程与技术专业硕士毕业后到中国原子能科学研究院工作至今,2021年中国原子能科学研究院核燃料循环与材料专业博士毕业。目前主要从事放射性有机溶剂处理、高放废物处置近场化学行为等方面的研究工作。发表论文20余篇,包括Chemical Communication和Materials等。liteng@ciae.ac.cn   
作者简介:  陈思雨,2020年6月毕业于武汉科技大学,获得理学学士学位。现为武汉科技大学协同创新中心硕士研究生,在张弦副教授的指导下进行研究。目前主要研究领域为镍基合金在苛刻环境下的腐蚀行为 。
引用本文:    
陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
CHEN Siyu, ZHANG Xian, LI Teng, LIU Jing, WU Kaiming. Research Progress on Corrosion Behavior of Reactor Plant Materials in Supercritical Water Oxidation Environment of Hazardous Waste Treatment. Materials Reports, 2023, 37(8): 21100176-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100176  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21100176
1 Zhang L, Wang J Q, Guan H, et al. Corrosion Science and Protection Technology, 2001(5), 270 (in Chinese).
张丽, 王俭秋, 关辉, 等.腐蚀科学与防护技术, 2001(5), 270.
2 Zhang G W, Dong Z H. The Modern Chemical Industry, 2019, 39(1), 18 (in Chinese).
张光伟, 董振海.现代化工, 2019, 39(1), 18.
3 Zhang F, Li Y, Liang Z, et al. Biomass and Bioenergy, 2022, 156, 106322.
4 Li N, Liu C, Liu S N, et al. Energy Saving in Nonferrous Metallurgy, 2020, 36(6), 16 (in Chinese).
李诺, 刘诚, 刘苏宁, 等.有色冶金节能, 2020, 36(6), 16.
5 Hou C X, Ma P S. Chemical Industry and Engineering, 2003(6), 361 (in Chinese).
侯彩霞, 马沛生.化学工业与工程, 2003(6), 361.
6 Dai H, Huang W H, Qian X L, et al. Chemical Industry and Environmental Protection, 2001(2), 79 (in Chinese).
戴航, 黄卫红, 钱晓良, 等.化工环保, 2001(2), 79.
7 Zhao J X. Study on corrosion of hexanitrostilbene in wastewater production by supercritical water oxidation. Master’s Thesis, University of North, 2011 (in Chinese).
赵军霞. 超临界水氧化六硝基茋生产废水设备材料的腐蚀研究. 硕士学位论文, 中北大学, 2011.
8 Mitton D B, et al. ACS Symposium Series 670, 1997, 6, 242
9 Mitton D B, Han E H, Zhang S H, et al.In: ACS Symposium Series 665, Supercritical Fluid, Washington, DC, 1996, pp.242.
10 Mitton D B, Zhang S H, Hautanen K E, et al. Corrosion, 1997, 203, 66.
11 Han E H, Mitton D B, Zhang S H, et al. New progress in corrosion science and anti-corrosion engineering technology, Chemical Industry Press, China, 1996, pp.161 (in Chinese).
韩恩厚, Mitton D B, Zhang S H, et al.腐蚀科学与防腐蚀工程技术新进展, 化学工业出版社, 1996, pp.161.
12 Zilberstein V A. Corrosion, 1995, 24, 558.
13 Kritzer P, Boukis N, Dinjus E. Corrosion, 1998, 54(10), 824.
14 Boukis N. Corrosion, 1997, 10,159.
15 Boukis N, Friedrich C, Habicht W, et al. Eurocorrosion, 1997, 208, 617.
16 Kritzer P. The Journal of Supercritical Fluids, 2004, 29, 1.
17 Latanision R M, Shaw R W. Workshop Summary, 1993, 93, 6
18 Hong G, Ordway D W, Zilberstein V A, In: Proceedings of the 4th International Symposium on Supercritical Fluids. Sendai, Japan, 1997, pp. 865.
19 Kritzer P, Boukis N, Dinjus E. Corrosion, 1998, 54(10), 824.
20 Huang S, Daehling K, Carleson T E, et al. Supercritical Science and Technology, 1989, 406, 276.
21 Bramlette T T, Mills B E, Hencken K R, et al. US patent, US908229, 1991.
22 Okamoto G, Corrosion, 1973, 13, 471.
23 McBee C L, Kruger J. Electrochem,1972, 17, 1337.
24 Moffat T P, Lantanision R M. Electrochem, 1992, 139, 1869.
25 Lin L F, Gragnolino G, Smialowska Z S. Corrosion, 1981, 37, 616.
26 Gragnolino G, Lin L F, Smialowska Z S. Corrosion, 1981, 312(1), 71.
27 Kriksunov L B, Macdonald D D. Electrochem,1995, 142, 4069.
28 Mitton D B, Marrone P A, Latanision R M. Electrochem, 1996, 143, 59.
29 Mitton D B, Zhang S H, Hautanen K E, et al. Corrosion, 1997, 203, 66.
30 Fujii T, Kobayashi T. Corrosion, 1976, 37, 416.
31 Olmedo A M, Villegas M, Alvarez M G, et al. Mater, 1996, 229, 102.
32 Kritzer P, Boukis N, Dinjus E. Corrosion, 1998,54(9), 689.
33 Shibata T, Fujimoto S. Corrosion, 1990, 46, 793.
34 Joshi A, Stein D F. Corrosion, 1972, 28, 321.
35 Cowan R L, Tedmon C S. Advances in Corrosion Science and Technology, 1973, 293, 400.
36 Kriksunov L B, Macdonald D D. Electrochem, 1995, 142, 4069.
37 Wofford W T, Dell’Orco P C, Gloyna E F, et al. Electrochem, 1995, 40, 968.
38 Yashiro H, Oyama A, Tanno K. Corrosion, 1997, 53, 290.
39 Weber J, Sury P. Materials Peform, 1976, 15(2), 34.
40 Malinowski D D, Fletcher W D. Materials Peform, 1978, 37, 103.
41 Herro H M, Banweg,A. Materials Peform, 1995, 34(12), 49.
42 Kritzer P, Boukis N, Dinjus E. Materials and Corrosion, 1998, 49(11), 831.
43 Murray R C, Cobble J W, In: Water Chemistry of Nuclear Reactor Systems. Pittsburgh, 1980, pp. 295.
44 Ryzhenko B N, Bryzgalin O V. Geochem, 1987, 24, 122.
45 Mesmer R E, Herting D L, Solut J. 1978, 7, 901.
46 Haufe P, Solut J. Electrochem, 1985, 14, 73.
47 Atrens A, Baroux B, Mantel M. Electrochem, 1997, 144, 3697.
48 Bogaerts W F, Bettendorf C. Electric Power Research Institute Report, 1988, 2, 5863.
49 Armellini F J, Tester J W. Supercritical Fluids, 1991, 4, 254.
50 Ma C Y, Jiang A X, Peng Y L, et al. Journal of Yunnan University (Na-tural Science), 2006(S1), 274 (in Chinese).
马承愚, 姜安玺, 彭英利, 等. 云南大学学报(自然科学版), 2006(S1), 274.
51 Boukis N, Friedrich C, Dinjus E. Corrosion, 1998, 417, 7.
52 Frayret C, Botella P, Jaszay T, et al. Journal of the Electrochemical So-ciety, 2004, 151(10), 543.
53 Tang X, Wang S, Qian L, et al. Chemical Engineering Research and Design, 2015, 100, 530.
54 Zha L, Li H P, Wang N. Electrochem, 2019, 14, 4546.
55 Tang X, Wang S, Xu D, et al. Industrial & Engineering Chemistry Research, 2013, 52(51), 18241.
56 Li N. Effect of high temperature and high pressure water medium on corrosion properties of 304 stainless steel. Master’s Thesis, Tianjin University, China, 2012 (in Chinese).
李娜. 高温高压水介质对304不锈钢腐蚀性能的影响研究. 硕士学位论文, 天津大学, 2012.
57 Yoon J H, Son K S, Kim H S, et al. Materials Science Forum, 2005, 475, 4207.
58 Liu Q Y, Li H P, Zhou L,et al. Petrochemical Corrosion and Protection, 2006, 23(5), 1 (in Chinese).
刘庆友, 李和平, 周丽, 等.石油化工腐蚀与防护, 2006, 23(5), 1.
59 Cheng X Q, Li X G, Du C W. Journal of Metal, 2006, 42(3), 299 (in Chinese).
程学群, 李晓刚, 杜翠薇.金属学报, 2006, 42(3), 299.
60 Lin Z X. Experimental study on stress corrosion of 304 austenitic stainless steel in NaOH+Cl-+H2O complex medium. Master’s Thesis, Zhejiang University of Technology, China, 2017 (in Chinese).
林志祥. 304奥氏体不锈钢在NaOH+Cl-+H2O复杂介质环境下的应力腐蚀试验研究. 硕士学位论文, 浙江工业大学, 2017.
61 Ma Z, Xu D, Guo S, et al. Oxidation of Metals, 2018, 90(5), 599.
62 Guo S, Xu D, Ma Z, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1919.
63 Sun M, Wu X, Zhang Z, et al. Corrosion Science, 2009, 51(5), 1069.
64 Gao X, Wu X, Zhang Z, et al. The Journal of Supercritical Fluids, 2007, 42(1), 157.
65 Hayward T M, Svishchev I M, Makhija R C. The Journal of Supercritical Fluids, 2003, 27(3), 275.
66 Xu D H, Guo S W. Corrosion Characteristics, Mechanisms and Control Methods of Candidate Alloys in Sub-and Supercritical Water, Springer Nature, 2022, pp. 241.
67 Hazlebeck D A, Downey K W, Jensen D D, et al. Spritzer, Supercritical water oxidation of chemical agents, propellants, and other DOD hazardous wastes, in: H.G. White, J.V. Sengers, D.B. Neuman, J.C. Bellows (Eds.). Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry. Begell House, New York, 1995, pp. 632.
68 Philip A M,Glenn T H. The Journal of Supercritical Fluids, 2009, 51(2).
69 Hong G T, Zilberstein V A. U.S. patent, US5527471, 1996.
70 Hong G T, Killilea W R, Ordway D W. U.S. patent, US5358645, 1994.
71 Hong G T. U.S. patent, US5545337, 1996.
72 Nauflett G W, Farncomb R E, Kumar M L. U.S. patent, US5461648, 1995.
73 Gui Y, Cheng Y, He C L. Science and Technology Information, 2021, 19(23), 1 (in Chinese).
桂艳, 程盈, 何炽灵. 科技资讯, 2021, 19(23), 1.
74 Duan B B, Wang Z G, Cai J, et al. Surface Technology, 2021, 50(12), 202 (in Chinese).
段冰冰, 王治国, 蔡晋, 等. 表面技术, 2021, 50(12), 202.
75 Zhang H C, He X M. Rare Metals, 2009, 33(6), 769 (in Chinese).
张聪惠, 何晓梅. 稀有金属, 2009, 33(6), 769.
76 Yang Y Q. Study on thermal corrosion resistance of Laser shot peening Nickel-based superalloy Inconel X-750. Master’s Thesis, Jiangsu University, China, 2017 (in Chinese).
杨颖秋. 激光喷丸强化镍基高温合金Inconel X-750抗热腐蚀性能研究. 硕士学位论文, 江苏大学, 2017.
77 Yang Y Q, Zhou J Z, Sheng J, et al. Journal of the Optical, 2017, 37(6), 160 (in Chinese).
杨颖秋, 周建忠, 盛杰, 等.光学学报, 2017, 37(6), 160.
78 Karthik D, Swaroop S. Journal of Alloys and Compounds, 2017, 694, 1309.
79 Pradhan D, Mahobia G S, Chattopadhyay K, et al. Journal of Materials Engineering and Performance, 2018, 27(8), 4235.
[1] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[2] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[3] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[4] 吴世杰, 刘丽霞, 彭军, 王晓丽, 焦海东, 霍启男. 珠光体组织对重轨钢U71Mn腐蚀行为的影响[J]. 材料导报, 2021, 35(12): 12147-12155.
[5] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[6] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[7] 王春明, 杨牧南, 黄建辉, 刘位江, 梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[8] 武焕春, 薛飞, 李成涛, 方可伟, 杨滨, 宋西平. 核电主管道不锈钢在高温高压水环境下的疲劳裂纹萌生行为[J]. 《材料导报》期刊社, 2018, 32(3): 373-377.
[9] 孙 毅,张文鑫,许春香,张金山,韩少兵,贾长健. 铸造镁合金Mg-Zn-Y-Zr-Ca在模拟体液中的腐蚀行为[J]. 《材料导报》期刊社, 2017, 31(24): 105-108.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed