Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 22070158-10    https://doi.org/10.11896/cldb.22070158
  无机非金属及其复合材料 |
多孔Al2O3f/Al2O3复合材料研究进展
刘海韬1,*, 姜如2,3, 孙逊1, 陈晓菲1, 马昕1, 杨方2,3
1 国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室,长沙 410073
2 湖南科技大学物理与电子科学学院,湖南 湘潭 411201
3 湖南科技大学智能传感器与先进传感器材料湖南省重点实验室,湖南 湘潭 411201
Research Progress on the Porous Al2O3f/Al2O3 Composites
LIU Haitao1,*, JIANG Ru2,3, SUN Xun1, CHEN Xiaofei1, MA Xin1, YANG Fang2,3
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411021, Hunan, China
3 Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411021, Hunan, China
下载:  全 文 ( PDF ) ( 4087KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为20世纪90年代兴起的一类连续陶瓷纤维增强陶瓷基复合材料,连续氧化铝纤维增韧氧化铝(Al2O3f/Al2O3)复合材料已经发展为与Cf/SiC、SiCf/SiC等非氧化物复合材料并列的陶瓷基复合材料。以多孔基体实现基体裂纹偏转成为Al2O3f/Al2O3复合材料主要的增韧设计方法,形成的多孔Al2O3f/Al2O3复合材料具有优异的抗氧化性能和高温力学性能,可在高温富氧、富含水汽的中等载荷工况中长时服役,是未来重要的热结构材料。经过近30年的发展,多孔Al2O3f/Al2O3复合材料已被应用于航空发动机、燃气轮机等热端部件。本文综述了多孔Al2O3f/Al2O3复合材料的增韧设计方法、制备方法、微观结构和力学性能等多个方面的研究进展,并提出了当下存在的问题以及后续发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘海韬
姜如
孙逊
陈晓菲
马昕
杨方
关键词:  Al2O3f/Al2O3复合材料  多孔基体  增韧机制  微观结构  力学性能    
Abstract: As one kind of ceramic matrix composites which rose in the 1990s, continuous alumina fiber reinforced alumina matrix (Al2O3f/Al2O3) composites have been developed into structural materials that are as important as those non-oxide/non-oxide ceramic matrix composites like Cf/SiC and SiCf/SiC composites. The main approach to achieve damage tolerance for the Al2O3f/Al2O3composites is the porous matrix rather than fiber coating. Due to their excellent oxidation resistance and high-temperature mechanical properties, the porous Al2O3f/Al2O3 composites can be used for a long time under varying environmental factors, such as high temperature, modest loads and moisture, and have already been deve-loped as prime candidate materials for thermal structural materials. After about 30 years of development, the porous Al2O3f/Al2O3 composites have already been applied in hot sections such as aeroengine and gas turbine. This paper summarizes the research progress in design for tough behavior, preparation, microstructure and mechanical properties of the porous Al2O3f/Al2O3 composites. Finally, the key problems and future development tendency of the porous Al2O3f/Al2O3 composites are proposed.
Key words:  Al2O3f/Al2O3 composite    porous matrix    toughening mechanism    microstructure    mechanical property
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TB332  
基金资助: 湖南省自然科学基金杰出青年项目(2020JJ2032)
通讯作者:  *刘海韬,国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室研究员、硕士研究生导师。2010年于国防科技大学材料科学与工程专业博士毕业,随后在国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室工作至今。目前主要从事陶瓷基复合材料制备、分析表征和工程应用等方面的研究工作。发表论文50余篇,包括Carbon、Corrosion Science、Composite Part B、Journal of the European Ceramic Society、Journal of the American Ceramic Society、Material & Design、Composite Structure等。htslht@163.com   
引用本文:    
刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
LIU Haitao, JIANG Ru, SUN Xun, CHEN Xiaofei, MA Xin, YANG Fang. Research Progress on the Porous Al2O3f/Al2O3 Composites. Materials Reports, 2023, 37(9): 22070158-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070158  或          http://www.mater-rep.com/CN/Y2023/V37/I9/22070158
1 Zhang L T. Fiber-reinforced silicon carbide ceramic composites—modeling, characterization & design, Chemical Industry Press, China, 2009, pp. 33 (in Chinese).
张立同. 纤维增韧碳化硅陶瓷复合材料—模拟、表征与设计, 化学工业出版社, 2009, pp. 33.
2 Ma Q S, Liu H T, Pan Y, et al. Journal of Inorganic Materials, 2013, 28(3), 247 (in Chinese).
马青松, 刘海韬, 潘余, 等. 无机材料学报, 2013, 28(3), 247.
3 Dang X L, Fan X M, Yin X W, et al. Journal of Inorganic Materials, 2020, 35(1), 29 (in Chinese).
党潇琳, 范晓孟, 殷小玮, 等. 无机材料学报, 2020, 35(1), 29.
4 Zhao C L, Yang B, Li K, et al. Materials China, 2021, 40(4), 257 (in Chinese).
赵春玲, 杨博, 李阔, 等. 中国材料进展, 2021, 40(4), 257.
5 Berger M, Bunsell A R. In:Comprehensive composite materials II, Beaumont P W R, Zweben C H, ed., Elsevier, Amsterdam, 2018, pp. 218.
6 Liu H T, Huang W Z, Zhou Y J, et al. High-temperature structural materials for microwave absorption, Science Press, China, 2017, pp. 73 (in Chinese).
刘海韬, 黄文质, 周永江, 等. 高温吸波结构材料, 科学出版社, 2017, pp. 73.
7 Walock M J, Heng V, Nieto A, et al. Journal of Engineering for Gas Turbines and Power, 2018, 140(10), 102101.
8 Singh A K, Kahle K, James H, et al. Ceramics International, 2021, 47, 17268.
9 Pritzkow W, Almeida R, Mateus L, et al. Journal of the European Ceramic Society, 2021, 41, 3177.
10 Schmucker M, Mechnich P. In:Ceramic matrix composites:fiber reinforced ceramics and their applications. Krenkel W, ed., Weinheim:Wiley, Germany, 2008, pp. 205.
11 Tushtev K, Almeida R S. In:Comprehensive composite materials II, Beaumont P W R, Zweben C H, ed., Elsevier, Amsterdam, 2018, pp. 133.
12 Mechnich P, Welter M. In:Encyclopedia of Materials:Composites, Brabazon D, ed., Elsevier, Amsterdam, 2021, pp. 48.
13 Zok F W. Journal of the American Ceramic Society, 2006, 89(11), 3309.
14 Keller K A, Jefferson G, Kerans R J. In: Ceramic matrix composites: materials, modeling and technology, Bansal N A, Lamon, ed., Wiley, Hoboken, 2015, pp. 236.
15 Volkman E, Teushtev K, Koch D, et al. Composites Part A:Applied Science and Manufacturing, 2015, 68, 19.
16 Ruggles-Wrenn M B. In:Comprehensive composite materials II, Beaumont P W R, Zweben C H, ed., Elsevier, Amsterdam, 2018, pp. 174.
17 Pritzkow W E C, Wehner F. In: Encyclopedia of materials:metals and alloys. Francisca G.Caballero F G, ed., Elsevier, Amsterdam, 2022, pp. 425.
18 BehrendT T, Hackemann S, Mechnich P, et al. In:Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul, 2016, pp. 1.
19 Jiang R, Yang L W, Liu H T, et al. Journal of the American Ceramic Society, 2018, 101, 3168.
20 Jiang R. Preparation and performance of continuous alumina fiber reinforced alumina matrix composites. Ph. D. Thesis, National University of Defense Technology, China, 2019 (in Chinese).
姜如. 连续氧化铝纤维增强氧化铝基复合材料的制备与性能研究. 博士学位论文, 国防科技大学, 2019.
21 Yang Z M, Yang J J. Journal of the European Ceramic Society, 2020, 40, 1549.
22 Yang Z M, Liu H. Ceramics International, 2020, 40, 6029.
23 Yang Z M, Liu H. Materials Science and Engineering:A, 2020, 769, 138494.
24 Jiang R, Sun X, Liu H T, et al. Journal of the European Ceramic Society, 2021, 41, 5394.
25 He M Y, Hutchinson J W. Journal of Solids and Structures, 1989, 25 (9), 1053.
26 Wang Y, Liu H T, Cheng H F, et al. Journal of Inorganic Materials, 2014, 29(7), 673 (in Chinese).
王义, 刘海韬, 程海峰, 等. 无机材料学报, 2014, 29(7), 673.
27 Krenkel W, Reichert T F. In:Comprehensive composite materials II, Beaumont P W R, Zweben C H, ed., Elsevier, Amsterdam, 2018, pp.1.
28 Xu Z K, Sun X H, Xiong K Z, et al. Ceramics International, 2021, 47, 5896.
29 Zhang J, Liu R J, Wang Y F, et al. Journal of the Chinese Ceramic Society, 2021, 49(9), 1869 (in Chinese).
张金, 刘荣军, 王衍飞, 等. 硅酸盐学报, 2021, 49(9), 1869.
30 Levi C G, Yang J Y, Dalgleish B J, et al. Journal of the American Ceramic Society, 1998, 84, 2077.
31 Holmquist M G, Lange F F. Journal of the American Ceramic Society, 2003, 86, 1733.
32 Ramdane C B, Julian-Jankowiak A, Valle R, et al. Journal of the European Ceramic Society, 2017, 37, 2919.
33 Kiser J D, Bansal N P, Ursic J, et al. In:Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. Montreal, 2015, pp. 1.
34 Gerendas M, Wilhelmi C, Machry T, et al. In:Proceedings of ASME Turbo Expo:Turbine Technical Conference and Exposition, San Antonio, 2013, pp. 1.
35 Rudinger A, Noeth A, Pritzkow W. Ceramics Application, 2015, 3(2), 48.
36 Puchas G, Mockel S, Krenkel W. Journal of the European Ceramic Society, 2020, 40, 5930.
37 Scola A, Eberling-Fux N, Turenne S, et al. Journal of the American Ceramic Society, 2019, 102, 3256.
38 Tontisakis A, Simpson W, Lincoln J, et al. Ceramics International, 2021, 47, 5347.
39 Aparicio I E, Fishpool D T, Diaz V R, et al. Journal of the European Ceramic Society, 2022, 42, 2420.
40 Ruggles-Wrenn M B, Minor S N, Przybyla C P, et al. International Journal of Applied Ceramic Technology, 2019, 16(1), 3.
41 Broutelle M, Lachaud F, Barroerre L, et al. Composite Structures, 2020, 236, 111902.
42 Silveira A D. Temperature performance of two oxide-based ceramic composites. Ph.D. Thesis, University of Bremen, Germany, 2016.
43 Hay R S, Fair G E, Tidball T. Journal of the American Ceramic Society, 2015, 98(6), 1907.
44 Zamani S M M, Behdinan K. Composites Part B:Engineering, 2019, 172, 299.
45 Ruggles-Wrenn M B, Lanser R L. Materials Science and Engineering A, 2016, 659, 270.
46 Liu X F, Liu H L, Huang C Z, et al. Ceramics International, 2017, 43, 1160.
47 AlmeidaA R S M, Bergmuller E L, Luhrs H, et al. Journal of the American Ceramic Society, 2017, 100 (9), 4101.
48 Schmucker M, Mechnich P. Journal of the American Ceramic Society, 2008, 91, 1306.
49 Schmucker M, Mechnich P. Journal of the American Ceramic Society, 2010, 93, 1888.
50 Ramachandran K, Leelavinodhan S, Aatao C, et al. Journal of the European Ceramic Society, 2022, 42, 1626.
51 Askarinejad S, Rahbar N, Sabelkin V, et al. Composite Structures, 2015, 127, 77.
52 Parthasarathy T A, Cinibulk M K, Zawada L P. Journal of the American Ceramic Society, 2010, 89(4), 1373.
53 Fantozzi G, Dominguez-Rodriguez A. In:Encyclopedia of materials:technical ceramics and glasses, Pomeroy M. Elsevier, Amsterdam, 2021, pp. 891.
54 Armani C J, Ruggles-Wrenn M B, Fair G E et al. International Journal of Applied Ceramic Technology, 2013, 10(2), 276.
55 Armani C J, Ruggles-Wrenn M B, Hay R S, et al. Acta Materialia, 2013, 61(16), 6114.
56 Deléglise F, Berger M H, Jeulin D, et al. Journal of the European Ceramic Society, 2001, 21, 569.
57 Zawada L P, Hay R S, Lee S S et al. Journal of the American Ceramic Society, 2010, 86(6), 981
58 Ruggles-Wrenn M B, Mall S, Eber C A, et al. Composites Part A:Applied Science and Manufacturing, 2006, 37(11), 2029.
59 Ruggles-Wrenn M B, Siegert G T, Baek S S. Composites Science and Technology, 2008, 68(6), 1588.
60 Wannaparhun S, Seal S. Journal of the American Ceramic Society, 2003, 86(9), 1628
61 Morscher G N, Parthasarathy T A, Cinibulk M K. In:Comprehensive composite materials II, Beaumont P W R, Zweben C H, ed., Elsevier, Amsterdam, 2018, pp. 158.
62 Yang Z M, Pei C H, Yan H, et al. Material Design and Processing Communications, 2020, 2, 129.
63 Ruggles-Wrenn M B, Hetrick G, Baek S S. International Journal of Fatigue, 2008, 30, 502.
64 Mehrman J M, Ruggles-Wrenn M B, Baek S S. Composites Science and Technology, 2007, 67(7-8), 1425.
65 Mizuno M, Zhu S, Nagano Y, et al. Journal of the American Ceramic Society, 2010, 79(12), 3065.
[1] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed