Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 22090082-9    https://doi.org/10.11896/cldb.22090082
  无机非金属及其复合材料 |
硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势
夏鹏1,2, 傅萍1,2, 黄金华2, 李佳2,*, 宋伟杰2
1 宁波大学材料科学与化学工程学院,浙江 宁波 315211
2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
Current Situation and Development Trend of Transparent Conductive Oxide Films on Silicon Heterojunction Solar Cells
XIA Peng1,2, FU Ping1,2, HUANG Jinhua2, LI Jia2,*, SONG Weijie2
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
2 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
下载:  全 文 ( PDF ) ( 4892KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅异质结(SHJ)太阳能电池是目前光伏产业中的重要组成部分,其由于具有高开路电压(Voc)等优点而引起了广泛的关注。在硅异质结太阳能电池中,透明导电氧化物(TCO)薄膜层的光学性能和电学性能分别影响着电池的短路电流(Jsc)、填充因子(FF),进而影响电池的转换效率。近年来,SHJ电池中TCO层的研究主要集中于掺杂的In2O3和ZnO体系。本文从硅异质结太阳能电池的不同结构出发,概述了TCO薄膜的光电性能(透过率、禁带宽度、方块电阻、载流子浓度、迁移率和功函数)以及与相邻层的接触对电池性能的影响,介绍了不同体系的透明导电氧化物薄膜在硅异质结太阳能电池中的应用及研究现状,并展望其未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏鹏
傅萍
黄金华
李佳
宋伟杰
关键词:  硅异质结太阳能电池  背发射极结构  透明导电氧化物薄膜  迁移率    
Abstract: Silicon heterojunction (SHJ) solar cells are an important part of the current photovoltaic industry, and they have attracted wide spread attention because of their high open-circuit voltage (Voc). The optical and electrical properties of transparent conductive oxide (TCO) films in SHJ solar cells affect the short-circuit current (Jsc) and filling factor (FF), respectively, and the variation of Jsc and FF will further affect the conversion efficiency of the cells. Therefore, the performance of the TCO film layer limits the long-term development of SHJ solar cells. In recent years, the development of TCO films in SHJ cells has mainly focused on improving the performance of doped In2O3 systems and doped ZnO systems. In this paper, we firstly describe the different structures of SHJ solar cells, followed by the optoelectronic properties, namely, transmittance, band gap, sheet resistance, carrier concentration, mobility, and work function, of transparent conductive oxide films. The effect of contact properties with each layer on the performance of the cell is then summarized, the application and research status of various transparent conductive oxide films in SHJ solar cells are introduced, and the prospects for their future development trends are reviewed.
Key words:  silicon heterojunction solar cell    rear emitter structure    transparent conductive oxide film    mobility
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TB321  
基金资助: 企业合作项目
通讯作者:  *李佳,中国科学院宁波材料技术与工程研究所项目研究员、博士研究生导师。2007年获得华中科技大学电子系博士学位,2008年加入中科院宁波材料所。目前从事柔性光电功能薄膜及应用方面的研究工作。已完成多项国家级和省部级项目及企业合作项目。发表SCI学术论文40余篇,授权中国发明专利10余项。lijia@nimte.ac.cn   
作者简介:  夏鹏,2020年6月于南昌航空大学获得工学学士学位。现为宁波大学与宁波材料技术与工程研究所联合培养的硕士研究生,主要在宁波材料技术与工程研究所工作。目前主要研究领域为透明导电氧化物薄膜。
引用本文:    
夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
XIA Peng, FU Ping, HUANG Jinhua, LI Jia, SONG Weijie. Current Situation and Development Trend of Transparent Conductive Oxide Films on Silicon Heterojunction Solar Cells. Materials Reports, 2023, 37(9): 22090082-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090082  或          http://www.mater-rep.com/CN/Y2023/V37/I9/22090082
1 Markus F. In:International Technology Roadmap for Photovoltaics(ITRPV, Oral presentation) 13th Edition, on line, 2022.
2 Liu W, Zhang L, Yang X, et al. Joule, 2020, 4(4), 913.
3 Haschke J, Dupré O, Boccard M, et al. Solar Energy Materials and Solar Cells, 2018, 187, 140.
4 Chavali R V K, De Wolf S, Alam M A. Progress in Photovoltaics:Research and Applications, 2018, 26(4), 241.
5 Descoeudres A, Barraud L, De Wolf S, et al. Applied Physics Letters, 2011, 99(12), 123506.
6 Yoshikawa K, Kawasaki H, Yoshida W, et al. Nature Energy, 2017, 2(5), 17032.
7 Haschke J, Seif J P, Riesen Y, et al. Energy & Environmental Science, 2017, 10(5), 1196.
8 Liang T S, Pravettoni M, Deline C, et al. Energy & Environmental Science, 2019, 12(1), 116.
9 Bivour M, Schröer S, Hermle M, et al. Solar Energy Materials and Solar Cells, 2014, 122, 120.
10 Bivour M, Steinkemper H, Jeurink J, et al. Energy Procedia, 2014, 55, 229.
11 Photovoltaic Professional Committee of China Renewable Energy Society. Report on 2020 China PV technology development—Research progress of crystalline silicon solarcells(part 8). Beijing, 2021(in Chinese).
中国可再生能源学会光伏专业委员会. 2020年中国光伏技术发展报告——晶体硅太阳电池研究进展(8). 北京, 2021.
12 Valla A, Carroy P, Ozanne F, et al. Solar Energy Materials and Solar Cells, 2016, 157, 874.
13 Cruz A, Ruske F, Eljarrat A, et al. IEEE Journal of Photovoltaics, 2020, 10(2), 703.
14 Cruz A, Wang E C, Morales-Vilches A B, et al. Solar Energy Materials and Solar Cells, 2019, 195, 339.
15 Kanevce A, Metzger W K. Journal of Applied Physics, 2009, 105(9), 094507.
16 De Wolf S, Kondo M. Applied Physics Letters, 2007, 91(11), 112109.
17 Holman Z C, Descoeudres A, Barraud L, et al. IEEE Journal of Photovoltaics, 2012, 2(1), 7.
18 Muralidharan P, Leilaeioun M A, Weigand W, et al. IEEE Journal of Photovoltaics, 2020, 10(2), 363.
19 Klein A, Körber C, Wachau A, et al. Thin Solid Films, 2009, 518(4), 1197.
20 Zhang Y. Studies on key issues of high conversion efficiency silicon heterojunction solar cells for industrialization. Ph. D. Thesis, Beijing University of Technology, China, 2017(in Chinese).
张悦. 面向产业化高效硅基异质结电池的关键问题研究. 博士学位论文, 北京工业大学, 2017.
21 Luderer C, Messmer C, Hermle M, et al. IEEE Journal of Photovoltaics, 2020, 10(4), 952.
22 Sun Z, Chen X, He Y, et al. Advanced Energy Materials, 2022, 12(23), 2200015.
23 Messmer C, Bivour M, Schön J, et al. Journal of Applied Physics, 2018, 124(8), 085702.
24 Procel P, Xu H, Saez A, et al. Progress in Photovoltaics:Research and Applications, 2020, 28(9), 935.
25 Alexandros C, Darja E, René K, et al. Industrial TCOs for SHJ solar cells:Approaches for optimizing performance and cost. https://www.pv-tech.org/technical-papers/industrial-tcos-for-shj-solar-cells-approaches-for-optimizing-performance-and-cost/, 2020.
26 Zhu K. Preparation and properties of high-quality ZnO-based transparent conductive thin films. Ph. D. Thesis, Universiy of Chinese Academy of Sciences, 2014(in Chinese).
朱科. 高质量 ZnO基透明导电氧化物薄膜的制备及其特性研究. 博士学位论文, 中国科学院大学, 2014.
27 Calnan S, Tiwari A N. Thin Solid Films, 2010, 518(7), 1839.
28 Ben A Z, Mahdhi H, Djessas K, et al. Thin Solid Films, 2014, 553, 123.
29 Liu X S, Dong L J. New Chemical Materials, 2020, 48(11), 35(in Chinese).
刘星生, 董丽君. 化学新型材料, 2020, 48(11), 35.
30 Hamberg I, Granqvist C G. Journal of Applied Physics, 1986, 60(11), R123.
31 Lien S Y. Thin Solid Films, 2010, 518, S10.
32 Balestrieri M, Pysch D, Becker J P, et al. Solar Energy Materials and Solar Cells, 2011, 95(8), 2390.
33 Yu J, Bian J, Duan W, et al. Solar Energy Materials and Solar Cells, 2016, 144, 359.
34 Newhouse P F, Park C H, Keszler D A, et al. Applied Physics Letters, 2005, 87, 112108.
35 Asikainen T, Ritala M, Leskelä M. Thin Solid Films, 2003, 440, 152.
36 Morales-Masis M, Rucavado E, Monnard R, et al. IEEE Journal of Photovoltaics, 2018, 8(5), 1202.
37 Warmsingh C, Yoshida Y, Readey D W, et al. Journal of Applied Physics, 2004, 95(7), 3831.
38 van Hest M F A M, Dabney M S, Perkins J D, et al. Applied Physics Letters, 2005, 87(3), 032111.
39 Macco B, Wu Y, Vanhemel D, et al. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(12), 987.
40 Erfurt D, Heinemann M D, Körner S, et al. Materials Science in Semiconductor Processing, 2019, 89, 170.
41 Kobayashi E, Watabe Y, Yamamoto T. Applied Physics Express, 2015, 8(1), 015505.
42 Gong W, Wang G, Gong Y, et al. Solar Energy Materials and Solar Cells, 2022, 234, 111404.
43 Kobayashi E, Watabe Y, Yamamoto T, et al. Solar Energy Materials and Solar Cells, 2016, 149, 75.
44 Dong G, Sang J, Peng C W, et al. Progress in Photovoltaics:Research and Applications, 2022, 30(9), 1136.
45 Peng S, Tang Y, Jin L, et al. Surface and Coatings Technology, 2017, 310, 251.
46 Selmane N, Cheknane A, Aillerie M, et al. Environmental Progress & Sustainable Energy, 2019, 38(4), 13114.
47 Zeng X, Wen X, Sun X, et al. Thin Solid Films, 2016, 605, 257.
48 Meza D, Cruz A, Morales-Vilches A, et al. Applied Sciences, 2019, 9(5), 862.
49 Wu Z, Duan W, Lambertz A, et al. Applied Surface Science, 2021, 542, 148749.
50 Greiner D, Gledhill S E, Köble C, et al. Thin Solid Films, 2011, 520(4), 1285.
51 Liu C. Research of ZnO transparent conductive film based on the silicon thin film solar cells. Master's Thesis, East China Institute of Technology, 2014(in Chinese).
刘持. 应用于硅基薄膜太阳能电池的ZnO透明导电膜的研究. 硕士学位论文, 东华理工大学, 2014.
52 Cruz A, Erfurt D, Wagner P, et al. Solar Energy Materials and Solar Cells, 2022, 236, 111493.
53 Morales-Vilches A B, Cruz A, Pingel S, et al. IEEE Journal of Photovoltaics, 2019, 9(1), 34.
54 Fukumoto M, Nakao S, Shigematsu K, et al. Scientific Reports, 2020, 10, 6844.
55 Ren N Y, Zhu J, Shi P F, et al. Solar Energy, 2018, 171, 907.
56 Yoo J J, Seo G, Chua M R, et al. Nature, 2021, 590, 587.
57 Li T, Zhang X, Ni J, et al. Solar Energy, 2016, 134, 375.
58 Liu M, Zhou Y, Dong G, et al. Solar Energy Materials and Solar Cells, 2019, 200, 109996.
59 United States Geological Survey, Indium Statistics and Information, https://www.usgs.gov/centers/national-minerals-information-center/indium-statistics-and-information. (accessed 20 December 2022)
60 Statista, Forecast number of mobile devices worldwide from 2020 to 2024, https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/.(accessed 20 December 2022)
61 Statista, Number of TV households worldwide from 2010 to 2026, https://www.statista.com/statistics/268695/number-of-tv-households-worldwide/. (accessed 20 December 2022)
62 Zhang Y, Kim M, Wang L, et al. Energy & Environmental Science, 2021, 14(11), 5587.
63 Ding K N. In:5th SHJ workshop (Oral presentation), France, 2022.
[1] 郝立成, 张明, 陈文超, 冯晓东. 高效本征薄层异质结(HIT)太阳电池技术研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 689-695.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed