Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 22060197-11    https://doi.org/10.11896/cldb.22060197
  无机非金属及其复合材料 |
超细镁渣微粉-水泥复合胶凝材料的性能及水化机理
孙睿, 邬兆杰, 王栋民*, 丁源, 房奎圳
中国矿业大学(北京)化学与环境工程学院,北京 100083
Properties and Hydration Mechanism of Ultrafine Magnesium Slag Powder-Cement Composites Cementitious Materials
SUN Rui, WU Zhaojie, WANG Dongmin*, DING Yuan, FANG Kuizhen
School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 8202KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金被誉为“21世纪绿色工程金属结构材料”,我国皮江法炼镁所得镁渣规模庞大、亟待解决,制备建筑材料是消纳镁渣的重要渠道,但国内外相关研究屈指可数,且普遍以镁渣耦合其他固废及水泥制备复合胶凝材料为主,鲜有针对镁渣-水泥简单体系的细致研究,故镁渣水化及其对水泥水化的影响机制尚未明确。本工作通过探究超细镁渣微粉-水泥复合胶凝材料(MS-C)新拌浆体和硬化浆体的性能、组成及结构演化规律,分析超细镁渣微粉对MS-C水化进程的影响机制,进一步揭示镁渣-水泥的协同水化机理。镁渣中的硅酸二钙以低活性γ-C2S为主,超细粉磨是发挥其填充效应的关键途径,掺入30%的超细镁渣粉使水泥中1 000 nm以上孔含量由7.98%降低至6.83%。在减水剂作用下,MS-C浆体的流动性随超细镁渣微粉掺量的增大而增大,在无减水剂时其作用相反。低掺量超细镁渣微粉的水化及弱胶凝作用可增大其填充效应对强度的贡献,并促进Ca(OH)2和C-S-H凝胶的生成,使得低超细镁渣微粉掺量的MS-C获得优于纯水泥的28 d力学性能。本研究获得了超细镁渣微粉-水泥水化特性的基础结论,为提高镁渣资源化利用价值及利用率提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙睿
邬兆杰
王栋民
丁源
房奎圳
关键词:  超细镁渣微粉  固体废弃物  复合胶凝材料  力学性能  水化进程  填充效应  孔结构    
Abstract: Magnesium alloy is known as the green engineering metal structure material in 21st century. The massive magnesium slag produced in China via Pidgeon process has become a crucial problem. Much solid waste can be reused in building materials preparation, and magnesium slag are no exception but are rarely studied. The researches mainly concerned in the cementitious materials prepared from magnesium slag coupled other solid wastes and cement, so the hydration mechanism of magnesium slag and its effect on cement hydration is not clear yet. In this work, the properties, composition and structural of ultrafine magnesium slag powder-cement composites cementitious materials (MS-C) were investigated, and the influence of ultrafine magnesium slag powder on the hydration process of MS-C were discussed, further unlocking the cooperative hydration mechanism of MS-C. The low reactive γ-C2S is the main form of dicalcium silicate in magnesium slag, so the ultrafine grinding is the key way to improve its filling effect. The content of pore larger than 1 000 nm in cement pastes was reduced from 7.98% to 6.83% when 30% of ultrafine magnesium slag powder was blended. The fluidity of MS-C fresh pastes increased with the addition of ultrafine magnesium slag powder under the action of superplasticizer, but the effect was opposite when there was no superplasticizer. The hydration and weak cementing of ultrafine magnesium slag powder with low dosage can enhance the contribution of its filling effect to strength, in which process more Ca(OH)2 and C-S-H gel were formed. Therefore, MS-C with low dosage of ultrafine magnesium slag powder obtained better mechanical properties than cement 28 d. The conclusions on the hydration characteristics of ultrafine magnesium slag powder-cement made in this study may provide a theoretical basis for improving the utilization value and rate of magnesium slag.
Key words:  ultrafine magnesium slag powder    solid wastes    composite cementitious materials    mechanical property    hydration process    filling effect    pore structures
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TU526  
基金资助: 国家重点研发计划项目(2019YFC1904302; 2019YFC1907202)
通讯作者:  *王栋民,中国矿业大学(北京)化学与环境工程学院教授、博士研究生导师,中国硅酸盐学会固废分会理事长。1985年、1988年于武汉理工大学获得工学学士、硕士学位,2002年于中国建筑材料科学研究总院非金属材料专业获得博士学位。长期致力于现代高性能水泥混凝土材料及其化学外加剂的精细化工合成与应用,从事工业/矿业固体废弃物处理与生态环境建筑材料制备与应用的研究。主持或参与国家自然科学基金面上项目4项、国家重点研发计划项目3项,以第一作者或通信作者发表SCI及EI论文150余篇,授权国家发明专利15项,出版专著及译著8部。wangdongmin@cumtb.edu.cn   
作者简介:  孙睿,2017年于中国矿业大学(北京)获得学士学位,现为中国矿业大学(北京)化学与环境工程学院博士研究生,在王栋民教授的指导下主要从事工业/矿业固体废弃物处理、生态环境建筑材料制备与应用的研究,参与国家重点研发计划项目2项、国家自然科学基金1项。以第一作者在Cement and Concrete Composites、Construction and Building Mate-rials等期刊发表论文5篇,授权国家发明专利3项。
引用本文:    
孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
SUN Rui, WU Zhaojie, WANG Dongmin, DING Yuan, FANG Kuizhen. Properties and Hydration Mechanism of Ultrafine Magnesium Slag Powder-Cement Composites Cementitious Materials. Materials Reports, 2023, 37(9): 22060197-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060197  或          http://www.mater-rep.com/CN/Y2023/V37/I9/22060197
1 Mordike B L, Ebert T. Materials Science and Engineering:A, 2001, 302(1), 37.
2 Trang T T T, Zhang J H, Kim J H, et al. Nature Communications, 2018, 9(1), 2522.
3 Xu T C, Yang Y, Peng X D, et al. Journal of Magnesium and Alloys, 2019, 7(3), 536.
4 Song J F, She J, Chen D L, et al. Journal of Magnesium and Alloys, 2020, 8(1), 1.
5 Ramakrishnan S, Koltun P. Resources, Conservation and Recycling, 2004, 42(1), 49.
6 Gao F, Nie Z R, Wang Z H, et al. International Journal of Life Cycle Assessment, 2009, 14(5), 480.
7 Sun P H, Li J C, Xiao K Y, et al. Earth Science Frontiers, 2018, 25(3), 159 (in Chinese).
孙鹏慧, 李景朝, 肖克炎, 等. 地学前缘, 2018, 25(3), 159.
8 Ministry of Industry and Information Technology of the People Republic China. Magnesium industry performance in 2021. [EB/OL], https://www.miit.gov.cn/gxsj/tjfx/yclgy/ys/art/2022/art_ec613b5f055-b4d6faa53001b45f38d99.html, 2022. 01. 29/2022. 06. 11.
中华人民共和国工业和信息化部. 2021年镁行业运行情况. [EB/OL]. https://www.miit.gov.cn/gxsj/tjfx/yclgy/ys/art/2022/art_ec613b5f055b4d6faa53001b45f38d99.html. 2022. 01. 29/2022. 06. 11.
9 Pidgeon L M, Alexander W. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1944, 159, 315.
10 Wada Y, Fujii S, Suzuki E, et al. Scientific Reports, 2017, 7(1), 46512.
11 Wang C, Zhang S J, Guo L J. International Journal of Heat and Mass Transfer, 2017, 115, 1348.
12 You J, Wang Y W. The Chinese Journal of Process Engineering, 2019, 19(3), 560 (in Chinese).
尤晶, 王耀武. 过程工程学报, 2019, 19(3), 560.
13 Tian Y, Wang L P, Yang B, et al. Journal of Magnesium and Alloys, 2022, 10(3), 697.
14 Ministry of Industry and Information Technology of the People Republic China. Magnesium industry specification conditions. [EB/OL], https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2020/art_d00a739657cd-49b4940600c96ce45a71.html, 2020. 03. 03/2022. 06. 11.
中华人民共和国工业和信息化部. 镁行业规范条件. [EB/OL], https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2020/art_d00a739657cd-49b4940600c96ce45a71.html, 2020.03.03/2022.06.11.
15 Ministry of Industry and Information Technology of the People Republic China. Notice on the implementation plan for accelerating the comprehensive utilization of industrial resources printed by eight departments of china. [EB/OL], https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2022/art_fc489238e7134848ab3f14bfe86c283e.html, 2022.01.27/2022.06.11.
中华人民共和国工业和信息化部. 八部门关于印发加快推动工业资源综合利用实施方案的通知. [EB/OL]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2022/art_fc489238e7134848ab3f14bfe86c283e.html. 2022. 01. 27/2022. 06. 11.
16 Li Y L, Fan Y, Chen Z L, et al. Environmental Engineering Science, 2016, 33(4), 290.
17 Feng L. Study on wet desulfurization of various forms magnesium slag. Master's Thesis, Taiyuan University of Technology, China, 2018 (in Chinese).
冯乐. 多种形态镁渣用于湿法脱硫的研究. 硕士学位论文, 太原理工大学, 2018.
18 Wang J H, Liu J H, Tan X. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2020, 47(2), 8 (in Chinese).
王金航, 刘家豪, 谭笑, 等. 北京化工大学学报(自然科学版), 2020, 47(2), 8.
19 Fan Y, Ge T, Liang P X. Chinese Journal of Environmental Engineering, 2016, 10(12), 7209 (in Chinese).
范远, 戈甜, 梁鹏翔, 等. 环境工程学报, 2016, 10(12), 7209.
20 Li Y L. Preparation and properties of slow releasing silicon-potash fertilizer by using magnesium slag. Ph. D. Thesis, Shanxi University, China, 2016 (in Chinese).
李咏玲. 镁渣基缓释性硅钾肥的制备及性能研究. 博士学位论文, 山西大学, 2016.
21 Ji Y, Chen G J, Li X. Bulletin of the Chinese Ceramic Society, 2015, 34(1), 36 (in Chinese).
嵇鹰, 陈冠君, 李霞. 硅酸盐通报, 2015, 34(1), 36.
22 Cui Z Z, Zhang C, Chen D D. Journal of Lanzhou University of Technology, 2018, 44(1), 133 (in Chinese).
崔自治, 张程, 陈东东. 兰州理工大学学报, 2018, 44(1), 133.
23 Deng J P, Chen X N, Guo Y P. Journal of Xi'an University of Science and Technology, 2008, 28(4), 735 (in Chinese).
邓军平, 陈新年, 郭一萍. 西安科技大学学报, 2008, 28(4), 735.
24 Zan H P, Zhao H J, Gao J R. Journal of Wuhan University of Technology, 2007, 29(5), 38 (in Chinese).
昝和平, 赵海晋, 高建荣, 等. 武汉理工大学学报, 2007, 29(5), 38.
25 Li H X, Huang Y Y, Yang X J, et al. Journal of Material Cycles and Waste Management, 2018, 20(3), 1701.
26 Zhao S Z, Han F L, Wang Y G. Bulletin of the Chinese Ceramic Society, 2017, 36(5), 1766 (in Chinese).
赵世珍, 韩凤兰, 王亚光. 硅酸盐通报, 2017, 36(5), 1766.
27 Ji Y, Li Y F, Yang K, et al. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2017, 49(2), 277 (in Chinese).
嵇鹰, 李亚芳, 杨康, 等. 西安建筑科技大学学报:自然科学版, 2017, 49(2), 277.
28 Ji G X, Peng X Q, Wang S P, et al. Construction and Building Materials, 2021, 295, 123619.
29 Ding Q J, Li Y, Hu S G, et al. Cement Engineering, 1998(3), 37 (in Chinese).
丁庆军, 李悦, 胡曙光, 等. 水泥工程, 1998(3), 37.
30 Liu L, Ruan S S, Fang Z Y. Journal of China Coal Society, 2021, 46(12), 3833 (in Chinese).
刘浪, 阮仕山, 方治余, 等. 煤炭学报, 2021, 46(12), 3833.
31 Liu L, Ruan S S, Qi C C, et al. Journal of Cleaner Production, 2021, 279, 123684.
32 Han F L, Yang Q X, Wu L E, et al. Advanced Materials Research, 2012, 418-420, 1657.
33 Zhou W F, Du H L, Kang L, et al. Materials, 2022, 15(3), 1130.
34 Mo L W, Hao Y Y, Liu Y P, et al. Cement and Concrete Research, 2019, 121, 81.
35 Ji G X. Research on preparation and performance of non-autoclaved curing aerated concrete prepared from alkali activated magnesium slag. Master's Thesis, Chongqing University, China, 2016 (in Chinese).
姬广祥. 碱-镁渣免蒸压加气混凝土的制备与性能研究. 硕士学位论文, 重庆大学, 2016.
36 Wang Y, Zhang Z G. China Petroleum and Chemical Standard and Quality, 2011, 31(10), 64 (in Chinese).
王燕, 张战刚. 中国石油和化工标准与质量, 2011, 31(10), 64.
37 Chen Y J. Research on the solidification and stabilization of heavy mental by magnesium slag and geopolymer based on fly-ash. Master's Thesis, North Minzu University, China, 2016 (in Chinese).
陈玉洁. 利用镁渣及粉煤灰基地质聚合物固化/稳定重金属实验研究. 硕士学位论文, 北方民族大学, 2016.
38 Kang L. Study on preparation and photocatalytic performance of alkali-activated steel slag and magnesium slag based cementitious material. Ph. D. Thesis, Xi'an University of Architecture and Technology, China, 2017 (in Chinese).
康乐. 碱激发钢渣-镁渣基胶凝材料的制备及其光催化性能研究. 博士学位论文, 西安建筑科技大学, 2017.
39 Liu S F, Sun W, Lin W, et al. Journal of the Chinese Ceramic Society, 2003, 31(11), 1080 (in Chinese).
刘斯凤, 孙伟, 林玮, 等. 硅酸盐学报, 2003, 31(11), 1080.
40 De Weerdt K, Kjellsen K O, Sellevold E, et al. Cement and Concrete Composites, 2011, 33(1), 30.
41 He Y. Particle gradation design research about limestone powder composite gelled powder materials. Master's Thesis, Hunan University, China, 2015 (in Chinese).
贺阳. 石灰石粉复合胶凝粉体材料的颗粒级配设计研究. 硕士学位论文, 湖南大学, 2015.
42 GB/T 8077-2012, 混凝土外加剂匀质性试验方法, 中国标准出版社, 2012.
43 Termkhajornkit P, Nawa T. Cement and Concrete Research, 2004, 34(6), 1017.
44 Zhang Y R, Kong X M, Gao L, et al. Cement and Concrete Research, 2016, 79, 291.
45 Zhang Q T. Fundamentals of inorganic materials science. East China University of Science and Technology Press, China, 2006, pp.125(in Chinese).
张其土. 无机材料科学基础, 华东理工大学出版社, 2006, pp. 125.
46 Zhang L R, Wang D M, Pan J. Journal of the Chinese Ceramic Society, 2014, 42(9), 1209.
47 Wang S, Guo K B, Yuan C P. Bulletin of the Chinese Ceramic Society, 2017, 36(11), 3625(in Chinese).
王胜, 郭凯彬, 袁超鹏, 等. 硅酸盐通报, 2017, 36(11), 3625.
48 Yang T, Zhang Z, Zhu H, et al. Construction and Building Materials, 2019, 213, 124372.
49 Zhang T, Ma B G, Jiang D B, et al. Construction and Building Materials, 2021, 301, 124372.
50 Sun R, Wang D M, Fang Z H. Metal Mine, 2022, 51(1), 41 (in Chinese).
孙睿, 王栋民, 房中华, 等. 金属矿山, 2022, 51(1), 41.
51 Li Y F. Study on preparation and properties of filling material in coal mined area. Master's Thesis, Xi'an University of Architecture and Technology, China, 2017 (in Chinese).
李亚芳. 镁渣填充材料的制备及其性能研究. 硕士学位论文, 西安建筑科技大学, 2017.
52 Ji Y S, Wu M, Ding B D, et al. Construction and Building Materials, 2014, 65, 67.
53 Frías M, de Rojas M I S, Cabrera J. Cement and Concrete Research, 2000, 30(2), 209.
54 Zhang D J, Wang D M, Zhao J H, et al. Applied Clay Science, 2020, 191, 105619.
55 Sun R, Wang D, Wang Y R, et al. Cement and Concrete Composites, 2022, 131, 104588.
56 Zhou S B, Huang X L, Liang X Y. Materials Reports, 2012, 26(1), 358 (in Chinese).
周胜波, 黄兴亮, 梁小英, 等. 材料导报, 2012, 26(1), 358.
57 Kocaba V, Gallucci E, Scrivener K L. Cement and Concrete Research, 2012, 42(3), 511.
58 Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials, CRC Press, USA, 2016, pp. 177.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 万文豪, 杨飞华, 王发洲, 张日红, 刘云鹏. 助熔成分对工程渣土烧制轻质陶粒性能的影响[J]. 材料导报, 2023, 37(7): 21120103-6.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed