Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21120103-6    https://doi.org/10.11896/cldb.21120103
  无机非金属及其复合材料 |
助熔成分对工程渣土烧制轻质陶粒性能的影响
万文豪1, 杨飞华2, 王发洲1, 张日红3, 刘云鹏1,*
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 北京建筑材料科学研究总院有限公司,北京 100000
3 宁波中淳高科股份有限公司,浙江 宁波 315000
Effect of Fluxes on the Performance of Lightweight Ceramsite Prepared by Engineering Muck
WAN Wenhao1, YANG Feihua2, WANG Fazhou1, ZHANG Rihong3, LIU Yunpeng1,*
1 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2 Beijing Building Materials Academy of Sciences Research, Beijing 100000, China
3 Ningbo Zhongchun Hi-Tech Co., Ltd., Ningbo 315000, Zhejiang, China
下载:  全 文 ( PDF ) ( 8228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,利用固体废弃物烧制轻质陶粒的配料设计仍主要依赖于Riley三角形,但由于固体废弃物组成复杂,根据Riley三角形进行陶粒配料设计偶尔会表现出不适用性,而这种不适用性与Riley三角形对原料中复杂的助熔组分不加以区分有关,因此研究不同助熔成分对陶粒烧成过程与性能的影响有重要的意义。
本工作设计原料组成在Riley三角形相似的位置,研究了四种常见助熔成分掺量对陶粒烧胀行为、物理性能及晶相组成的影响,并建立三者之间的联系。结果表明,不同助熔成分对陶粒烧胀性能、物理性能及晶相组成有着不同的影响。MgO、CaO及Na2CO3均可明显改善陶粒的烧胀效果,但最佳的掺量及改善效果存在差异:MgO、CaO、Na2CO3掺量(质量分数)分别为1%、1.5%、2%时,分别可制备表观密度为1.38 g/cm3、1.06 g/cm3、0.96 g/cm3,单颗粒强度为9.8 MPa、3.9 MPa、4.9 MPa的陶粒。进一步研究表明,这种差异来源于不同助熔成分对晶相组成和液相性质的影响。本工作可为当前工业固废烧制陶粒的配料设计提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万文豪
杨飞华
王发洲
张日红
刘云鹏
关键词:  轻骨料性能  焙烧制度  工业固体废弃物  陶粒  助熔剂    
Abstract: Currently, lightweight aggregate(LWA) is mainly designed empirically based on the Riley scheme. Due to the complex composition of different solid waste, the proportioning design of ceramsite based on Riley triangle occasionally shows inapplicability. Therefore, it is necessary to study the influence of different flux on the performance of LWA.
In this study, the compositions of the raw materials with different fluxes were designed in similar locations in Riley triangle. Different fluxes had different effects on the sintering and swelling properties, physical properties, and crystal phase composition of LWA. The effects of four flux type and dosages on the swelling behavior, physical properties and crystal phase composition of the LWA were studied, while conclusively bridging them. The results showed that with MgO, CaO and Na2CO3 content of 1wt%, 1.5wt% and 2wt%, the apparent density of obtained LWA was 1.38 g/cm3, 1.06 g/cm3 and 0.96 g/cm3, and the strength was 9.8 MPa, 3.9 MPa and 4.9 MPa, respectively. Further research showed that the difference came from the effects of different flux components on crystal phase composition and liquid phase properties. This work can provide some reference for the proportioning design of ceramsite from solid waste.
Key words:  LWA performance    calcination regime    industrial solid waste    ceramsite    flux
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  X705  
基金资助: 国家重点研发计划项目(2018YFE0106300);固废资源化利用与节能建材国家重点实验室开放基金(20191h0592);宁波市科技创新2025重大专项(20191ZDYF020159)
通讯作者:  * 刘云鹏,武汉理工大学硅酸盐建筑材料国家重点实验室副研究员、硕士研究生导师。2013年武汉理工大学博士毕业后留校工作至今。2017年11月至2018年11月在美国宾夕法尼亚州立大学访学一年。目前主要从事高性能轻骨料混凝土与聚合物改性混凝土等方面的研究工作,已发表学术论文30余篇。liuyunpeng@whut.edu.cn   
作者简介:  万文豪,2020年6月毕业于湖北大学,获工学学士学位。现为武汉理工大学材料科学与工程学院硕士研究生,在刘云鹏副研究员的指导下开展高性能轻骨料的设计与制备方面的研究工作。
引用本文:    
万文豪, 杨飞华, 王发洲, 张日红, 刘云鹏. 助熔成分对工程渣土烧制轻质陶粒性能的影响[J]. 材料导报, 2023, 37(7): 21120103-6.
WAN Wenhao, YANG Feihua, WANG Fazhou, ZHANG Rihong, LIU Yunpeng. Effect of Fluxes on the Performance of Lightweight Ceramsite Prepared by Engineering Muck. Materials Reports, 2023, 37(7): 21120103-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120103  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21120103
1 Ma M L, Sun X N, Quan Z G, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2492 (in Chinese).
马明亮, 孙晓南, 权宗刚, 等. 硅酸盐通报, 2020, 39(8), 2492.
2 Wang X B, Yang C Q, Zhang X W, et al. China Powder Science and Technology, 2021, 27(2), 1 (in Chinese).
汪学彬, 杨重卿, 张祥伟, 等. 中国粉体技术, 2021, 27(2), 1.
3 Nadesan M S, Dinakar P. Construction and Building Materials, 2017, 154, 928.
4 Chen Y L, Shi L, Du J Y, et al. Journal of Building Materials, 2019, 22(5), 721 (in Chinese).
陈永亮, 石磊, 杜金洋, 等. 建筑材料学报, 2019, 22(5), 721.
5 Hu M J, Li L H, Cui H J. Journal of Building Materials, 2019, 22(2), 308 (in Chinese).
胡明君, 李立寒, 崔华杰. 建筑材料学报, 2019, 22(2), 308.
6 Zhang N, Duan H B, Sun P W, et al. Journal of Cleaner Production, 2020, 248, 119242.
7 Recyclable Resources and Circular Economy, 2021, 14(4), 1 (in Chinese).
再生资源与循环经济, 2021, 14(4), 1.
8 Sang D, Wang A G, Sun D S, et al. Materials Reports: Review Papers, 2016, 30(5), 110 (in Chinese).
桑迪, 王爱国, 孙道胜, 等. 材料导报:综述篇, 2016, 30(5), 110.
9 Dondi M, Cappelletti P, D’Amore M, et al. Construction and Building Materials, 2016, 127, 394.
10 Zhang L H. Preparation of lightweight aggregate use by ferrochrone slag based on the interfacial zone optimization and the performance of concrete. Ph. D. Thesis, Southeast University, China, 2018 (in Chinese).
张礼华. 基于界面优化的铬铁冶金渣轻集料制备及混凝土性能研究. 博士学位论文, 东南大学, 2018.
11 Zou J L, Xu G R, Li G B. Journal of Hazardous Materials, 2009, 165(1-3), 995.
12 Liu M W, Guo J B, Shan Y T. Construction and Building Materials, 2020, 259, 120398.
13 Markus B, Harald J, Hilde T, et al. Cement and Concrete Composites, 2014, 53, 233.
14 Teng X Y, Liu H L, Huang C Z. Materials Science and Engineering: A, 2007, 452, 544.
15 Riley C M. Journal of the American Ceramic Society, 1951, 34(4), 121.
16 Yashima S, Kanda Y, Sano S. Powder Technology, 1987, 51(3), 277.
17 Mansfeldt T, Dohrmann R. Environmental Science & Technology, 2004, 38(22), 5977.
18 Markus B, Harald J, Hilde T, et al. Cement and Concrete Composites, 2014, 53, 233.
19 Li B D, Jian S W, Zhu J Q, et al. Waste Management, 2020, 118, 131.
20 José M M, Manuel U, Carlos J C, et al. Construction and Building Materials, 2020, 237, 117583.
21 Cao Y, Liu R, Xu Y F, et al. Construction and Building Materials, 2019, 205, 368.
22 Zhao Y, Cheng W T, Cheng F Q. China Science Paper, 2015, 10(21), 2513 (in Chinese).
赵瑜, 程文婷, 程芳琴. 中国科技论文, 2015, 10(21), 2513.
23 Xu G R, Zou J L, Li G B. Water Research, 2009, 43(11), 2885.
[1] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[2] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[3] 叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪. 电解锰渣陶粒共烧结温度影响机理研究[J]. 材料导报, 2022, 36(11): 21120242-6.
[4] 周果, 孙红娟, 彭同江. Na2CO3助熔剂与基于石棉尾矿微晶陶瓷晶相转变和理化性能的关联规律探索[J]. 材料导报, 2021, 35(7): 7013-7018.
[5] 黄晓寒, 程华, 郑子云, 牛梓蓉, 张左群. 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35(22): 22027-22032.
[6] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[7] 何诗华,严捍东. 国内节能型剪力墙技术研究和应用现状分析[J]. 《材料导报》期刊社, 2018, 32(11): 1910-1915.
[8] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed