Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21120126-7    https://doi.org/10.11896/cldb.21120126
  高分子与聚合物基复合材料 |
分子尺度下研究海洋污损生物的吸附机理
施宏玉1, 邢冀琦1, 薛培宏1, 刘娟1,2,*
1 大连海事大学交通运输工程学院,辽宁 大连 116026
2 科罗拉多大学(博尔德)化学与生物工程系,美国 博尔德 80309
Adsorption Mechanism of Marine Biofouling Under Atomic Scale
SHI Hongyu1, XING Jiqi1, XUE Peihong1, LIU Juan1,2,*
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
2 Department of Chemical and Biological Engineering, University of Colorado, Boulder 80309, USA
下载:  全 文 ( PDF ) ( 7380KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 防止生物污损是减少海洋装备的生物腐蚀、船舶航行阻力以及能源损耗的重要途径。研究污损生物粘附机制,对于海洋装备的表面处理工艺有重要的指导意义。本工作模拟研究了由藤壶粘附蛋白中高频出现的氨基酸构成的肽分子p5、p6、p13在船舶涂层材料-环氧树脂表面的吸附强度和吸附行为。计算结果表明,肽分子主要依靠-SH、-CH3和肽分子骨架吸附在环氧树脂表面。吸附强度与吸附位点的数量呈现正相关性,这与许多实验结论高度吻合。当吸附位点的数量相同时,吸附强度与肽分子构象有直接关系。肽分子中以聚丙烯螺旋(PPII)为主的构象含量越多,则需要克服的二级结构中的分子内氢键势垒越高,导致吸附能数值更正,吸附强度降低。在不同的环境条件(如温度、离子浓度)下,肽分子构象也会发生改变,进而影响吸附强度。本工作从蛋白质分子构象的角度分析了海洋污损中藤壶的吸附机理,该方法也可拓展到其他污损生物吸附体系,为抗生物污损涂层的设计提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施宏玉
邢冀琦
薛培宏
刘娟
关键词:  生物污损  分子动力学  吸附位点  吸附强度  蛋白质构象    
Abstract: Biological pollution is a problem that must be faced in the development of marine resources. The research on the mechanism of biofouling adhesion can provide important guidance for the surface treatment process of marine related equipment. This work used molecular dynamics to simulate the adsorption strength and adsorption sites of peptides p5, p6 and p13 composed of amino acid frequently occurring in barnacle adhesive proteins on the surface of epoxy resin. Peptides were adsorbed on the surface of epoxy resin through -SH, -CH3 and peptide chain backbone. The more adsorption sites, the greater the adsorption strength. With the number of adsorption sites fixed, the adsorption strength is directly related to the conformation of the peptide chain. The higher the conformational content of PPII in the peptide molecule, the higher the intramolecular hydrogen bond potential barrier in the secondary structure that needs to be overcome, resulting in a more positive adsorption energy and a decrease in the adsorption affinity. Under different environmental conditions (e.g., temperature, ion concentration), the conformation of peptide molecules can also change, which further affects the adsorption affinity. This work revealed the adsorption mechanism of fouling organisms from the perspective of protein molecular conformation, which can be extended to other marine biofouling systems, providing a theoretical basis for the design of antifouling coatings.
Key words:  biological fouling    molecular dynamics    adsorption site    adsorption strength    protein conformation
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  O647.4  
基金资助: 中央高校基本科研基金(3132021188);国家自然科学基金(21802014);中国博士后科学基金(2020M670718)
通讯作者:  * 刘娟,大连海事大学交通运输工程学院教授、博士研究生导师。2007年华侨大学材料科学与工程学院应用化学专业本科毕业,2012年长春理工大学物理化学专业硕士毕业,2015年于苏州大学功能纳米与软物质研究院获得无机化学专业理学博士学位。2016年至2019年在美国科罗拉多大学博尔德校区化学与生物工程系以博士后研究学者身份从事计算化学的相关研究。2019年9月加入大连海事大学工作至今。目前主要从事亚稳态低维材料、涂层材料等方面的研究工作。发表论文30余篇,包括Science、Advanced Energy Materials、Chemical Science、Green Chemistry、Nature Communications等。juan.liu@dlmu.edu.cn   
作者简介:  施宏玉,2019年7月于沈阳农业大学获得工学学士学位。现为大连海事大学交通运输工程学院硕士研究生,在刘娟教授的指导下进行研究。目前主要研究领域为海洋污损生物附着机理和海洋防污涂层材料的设计。
引用本文:    
施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
SHI Hongyu, XING Jiqi, XUE Peihong, LIU Juan. Adsorption Mechanism of Marine Biofouling Under Atomic Scale. Materials Reports, 2023, 37(7): 21120126-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120126  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21120126
1 Silva E R, Ferreira O, Ramalho P A. Science of the Total Environment, 2019, 650(2), 2499.
2 Wei J S. Navigation Technology, 1994(4), 63(in Chinese).
魏锦生. 航海技术, 1994(4), 63.
3 Clare A S. New Scientist, 1995, 145(1965), 38.
4 Liu X Y. New chemical materials, 1991(12), 8(in Chinese).
刘学英. 化工新型材料, 1991(12), 8.
5 Duan J Z. Corrosion and protection of marine engineering materials and structures, Chemical Industry Press, China, 2017, pp. 135(in Chinese).
段继周. 海洋工程材料与结构的腐蚀与防护, 化学工业出版社, 2017, pp. 135.
6 Xie L Y, Hong F, Liu J H. Acta Polymerica Sinica, 2012(1), 3(in Chinese).
解来勇, 洪飞, 刘剑洪. 高分子学报, 2012(1), 3.
7 Wang Y, Pitet L M, Finlay J, et al. Biofouling, 2011, 27, 1139.
8 Feng S J, Wang Q, Gao Y, et al. Applied Polymer Science, 2009, 114, 2071.
9 Brady R F, Singer I L. Biofouling, 2000, 15, 73.
10 Genzer J, Efimenko K. Biofouling, 2006, 22, 339.
11 Wilson L H, Schumacher J F, Carman M L, et al. Biofouling, 2004, 20, 53.
12 Scardino A J, Zhang H, Cookson D J, et al. Biofouling, 2009, 25, 757.
13 Liao Z, Shen W, Wang R X. Journal of Zhejiang Ocean University, 2007(4), 439(in Chinese).
廖智, 申望, 王日昕. 浙江海洋学院学报, 2007(4), 439.
14 Crisp D J, Walker G, Young G A, et al. Journal of Colloid Interface Science, 1985, 104, 40.
15 Aldred N, Clare A S. Biofouling, 2008, 24, 351.
16 Walker G, Yule A B. Journal of the Marine Biological Association of the UK, 1984, 64, 679.
17 Clare A S, Nott J A. Journal of the Marine Biological Association of the UK, 1994, 74, 967.
18 Nott J A, Foster B A. Philos Trans R Soc Lond B Biol Sci, 1969, 256(803), 115.
19 Huang Y, Ke C H, Zhou S Q. Marine Science, 2001(3), 30(in Chinese).
黄英, 柯才焕, 周时强. 海洋科学, 2001(3), 30.
20 Chen C C, Xiang L Y, Liu H Q. Marine Environmental Science, 2012, 31(4), 621(in Chinese).
陈长春, 项凌云, 刘汉奇. 海洋环境科学, 2012, 31(4), 621.
21 Chen X, Tang M, Liu Q Y, et al. Marine Science, 2017, 41(7), 150(in Chinese).
陈新, 唐敏, 刘秋妤, 等. 海洋科学, 2017, 41(7), 150.
22 Walker C, Rittschof D, Orihuela B. Biofouling, 2009, 25(3), 263.
23 Figueroa A, Schablik D, Mastroberte M. Marine Technology Society Journal, 2017, 51(2), 39.
24 Fino D, Petrone L, Aldred N. Biofouling, 2013, 30(2), 143.
25 Finlay A, Bennett M, Brewer H. Biofouling, 2010, 26(6), 657.
26 Petersen S, Gorb N, Heepe L. Frontiers in Marine Science, 2020, 7, 664.
27 Berglin M, Lönn N, Gatenholm P. Biofouling, 2003, 19, 63.
28 Zhuang C Q, Yue H, Zhang H J. Plastics, 2010, 39(4), 81(in Chinese).
庄昌清, 岳红, 张慧军. 塑料, 2010, 39(4), 81.
29 Jun Y, Zhao Y, Zhu R. Materials Science and Engineering:A, 2005, 409, 160.
30 Liu X, Shen T, Cheng H. Plastic Technology, 2021, 49(9), 96(in Chinese).
刘娴, 沈婷, 程欢. 塑料科技, 2021, 49(9), 96.
31 Huang J, MacKerell A D. Journal of Computational Chemistry, 2013, 34, 2135.
32 Heinz H, Lin T J, Mishra R K, et al. Langmuir, 2013, 29, 1754.
33 Tao Y W. Shanxi Architecture, 2021, 47(23), 81(in Chinese).
陶亚文. 山西建筑, 2021, 47(23), 81.
34 Phillips J C. Journal of Computational Chemistry, 2005, 26, 1781.
35 Humphrey W, Dalke A, Schulten K. Journal of Molecular Graphics & Modelling, 1996, 14, 33.
36 Adzhubei A A, Sternberg M J E, Makarov A A J. Journal of Molecular Biology, 2013, 425(12), 2100.
37 Heinz. Journal of Computational Chemistry, 2010, 31(7), 1564.
38 Jaimie-Leigh J, Florence A, Elisabete P. PLoS ONE, 2014, 9(10), e108902.
39 Kamino K, Odo S, Maruyama T. Biological Bulletin, 1996, 190(3), 403.
40 Mori Y, Urushida Y, Nakano M, et al. FEBS Journal, 2007, 274(24), 6436.
41 Scardino A J, Harvey E, Nys R D. Biofouling, 2006, 22, 55.
[1] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[2] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[3] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[4] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[5] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[6] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[7] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[8] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[9] 屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
[10] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[11] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[12] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[13] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[14] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[15] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed