Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21050106-6    https://doi.org/10.11896/cldb.21050106
  无机非金属及其复合材料 |
基于分子动力学模拟技术的生物质油改性沥青微观性能研究
屈鑫1, 丁鹤洋1,2, 王超3, 刘玉1, 汪海年1
1 长安大学公路学院,西安 710064
2 德国亚琛工业大学土木工程学院,亚琛 52074
3 北京工业大学城市建设学部,北京 100124
Research on Micro Properties of Bio-oil Modified Asphalt Based on Molecular Dynamics Simulation Technique
QU Xin1, DING Heyang1,2, WANG Chao3, LIU Yu1, WANG Hainian1
1 School of Highway, Chang'an University, Xi'an 710064, China
2 Institute of Highway Engineering, RWTH Aachen University, Aachen 52074, Germany
3 Department of Road and Railway Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 6588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了进一步验证生物质油改性沥青在沥青路面中应用的可行性,将不同掺量的生物质油掺入沥青中,借助分子动力学技术及宏观试验研究了生物质油对沥青微观技术性能的影响及机理。引入内聚能密度和Hansen溶解度等微观评价指标,以动态模量-内聚能密度关系验证沥青模型的合理性,进而研究包括微观杨氏模量、微观泊松比、微观黏度和溶解度参数在内的微观性能。研究表明,基于甘油三酯(TG)平均分子结构获得的生物质油改性沥青分子模型具有良好的可靠性;在微观尺度下,沥青材料的内聚能密度越大,沥青中各分子之间的黏结也越牢固,宏观上表现出更强的抗剪切变形能力;而掺量逐步增大的生物质油会使沥青模型的杨氏模量和泊松比有所降低,在一定载荷下,生物质油的掺入会使沥青变得更加柔和,其在水平方向的变形也会更小;同样,沥青模型的黏度也会随着生物质油掺量的增加而有所降低。另外,计算了SBS改性剂、生物质油及沥青的Hansen溶解度参数,结果证实了SBS与沥青的储存稳定性差的微观机理在于两者的Hansen溶解度参数相差较大,同时,相比于SBS改性剂,生物质油的Hansen溶解度参数与沥青更为接近。从微观机理上可以推断,生物质油改性沥青的储存稳定性优于SBS改性沥青。本工作探明了生物质油对沥青微观性质的影响,进一步拓展了研究沥青材料的科学方法,为生物质油改性沥青在道路施工中的存储和应用提供了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈鑫
丁鹤洋
王超
刘玉
汪海年
关键词:  路面工程  道路材料  生物质油  力学性能  分子动力学  Hansen溶解度参数    
Abstract: In order to further verify the feasibility of the application of bio-oil modified asphalt in asphalt pavement, this work mixed different amounts of bio-oil into the asphalt, and the impact and mechanism of the micro-technical performance of bio-oil on asphalt were studied by means of molecular dynamics technology and macro experiments. In this work, microscopic evaluation indicators such as cohesive energy density and Hansen solubility were introduced, the rationality of the asphalt model was verified by the relationship between dynamic modulus and cohesive energy density, and the microscopic properties including microscopic Young's modulus, microscopic Poisson's ratio, microscopic viscosity and solubility parameters were further studied. The results show that the molecular model of bio-oil modified asphalt based on the average molecular structure of triglyceride (TG) has good reliability; in micro scale, the greater the cohesive energy density of the asphalt binder, the stronger the bond between the molecules in the asphalt binder, and the better the ability to resist shear deformation macroscopically; the increasing bio-oil can reduce the Young's modulus and Poisson's ratio of the asphalt model; under a certain load, the incorporation of bio-oil can make the asphalt binder softer, and the horizontal deformation also gets smaller. Similarly, the shear modulus of the asphalt binder model decreases with the amount of bio-oil. In addition, the Hansen solubility parameters of SBS modifier, biomass oil and asphalt were calculated. It is confirmed that the microscopic reason for the poor storage stability of SBS modified asphalt binder is the difference of the Hansen solubility parameters between SBS and asphalt binder. Furthermore, it is found that the Hansen solubility parameter of bio-oil and asphalt binder is closer, compared with SBS. From the microscopic mechanism, it can be inferred that the storage stability of bio-oil modified asphalt binder is better than that of SBS-modified asphalt binder. The influence of biomass oil on the microscopic properties of asphalt has been proved, and the scientific method of studying asphalt materials has been further expanded. The storage and application of oil-modified asphalt in asphalt road construction provides a theoretical basis.
Key words:  pavement engineering    road material    bio-oil    mechanical property    molecular dynamics    Hansen solubility parameter
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  U414  
基金资助: 国家自然科学基金(51878063;52078048;52008029)
通讯作者:  wanghn@chd.edu.cn   
作者简介:  屈鑫,现为长安大学公路学院讲师、道路与机场道面硕士研究生导师。2018年毕业于德国亚琛工业大学,获得工学博士学位。研究方向包括沥青性能表征和本构方程、沥青微观结构表征与模拟、沥青老化和改性机理、乳化沥青及其混合料技术性能和SBS改性沥青的再生技术等。
汪海年,现为长安大学公路学院教授、博士研究生导师。2007年毕业于长安大学,获得工学博士学位。2010—2011年在密歇根理工大学作访问学者。研究方向包括特殊区域道路工程设计理论与方法、道路材料细观表征与建模、环保铺面材料研发与评价等,发表学术论文160余篇,其中以第一或通信作者发表SCI论文53篇,入选爱思唯尔中国高被引学者。
引用本文:    
屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
QU Xin, DING Heyang, WANG Chao, LIU Yu, WANG Hainian. Research on Micro Properties of Bio-oil Modified Asphalt Based on Molecular Dynamics Simulation Technique. Materials Reports, 2022, 36(19): 21050106-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050106  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21050106
1 Yaakob Z, Mohammad M, Alherbawi M, et al. Renewable & Sustainable Energy Reviews, 2013, 18, 184.
2 Zhang H, Xu Z, Zhou D, et al. Applied Energy, 2017, 185, 547.
3 Mohammadshirazi A, Akram A, Rafiee S, et al. Renewable and Sustai-nable Energy Reviews, 2014, 33, 44.
4 Wen H, Bhusal S, Wen B. Journal of Materials in Civil Engineering, 2012, 25(10), 1432.
5 Sun Z, Yi J, Huang Y, et al. Construction and Building Materials, 2016, 102, 496.
6 Fini E H, Kalberer E W, Shahbazi A, et al. Journal of Materials in Civil Engineering, 2011, 23(11), 1506.
7 Hill B, Oldham D, Behnia B, et al. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2371, 49.
8 Azahar W N A W, Jaya R P, Hainin M R, et al. Construction and Buil-ding Materials, 2016, 126, 218.
9 Asli H, Ahmadinia E, Zargar M, et al. Construction and Building Mate-rials, 2012, 37, 398.
10 Kolchakova G, Ivanova M, Terziyska L. Journal of Chemical Technology and Metallurgy, 2018, 53, 1127.
11 Chen M, Xiao F, Putman B, et al. Construction and Building Materials, 2014, 59, 10.
12 Chen M, Leng B, Wu S, et al. Construction and Building Materials, 2014, 66, 286.
13 Su J, Qiu J, Schlangen E, et al. Construction and Building Materials, 2015, 74, 83.
14 Gong M, Yang J, Zhang J, et al. Construction and Building Materials, 2016, 105, 35.
15 Hou Y, Sun W, Huang Y, et al. Journal of Cold Regions Engineering, 2016, 31, 04016009.
16 Hou Y, Wang L, Wang D, et al. Materials, 2017, 10, 208.
17 Hou Y, Guo M, Ge Z, et al. Journal of Engineering Mechanics, 2017, 143(7), 04017033.
18 Bhasin A, Bommavaram R, Greenfield M, et al. Journal of Materials in Civil Engineering, 2011, 23, 485.
19 Bhasin A, Motamed A. International Journal of Pavement Engineering, 2011, 12, 371.
20 Xu G, Wang H. Computational Materials Science, 2016, 112,161.
21 Xu G, Wang H. Fuel, 2017, 188, 1.
22 Guo M, Huang Y, Wang L, et al. International Journal of Pavement Research and Technology, 2017, 11, 321.
23 Guo M, Tan Y, Wang L, et al. Road Materials and Pavement Design, 2017, 18, 149.
24 Ding Y, Huang B, Shu X, et al. Fuel, 2016, 174, 267.
25 Corbett L. Analytical Chemistry, 1969, 41(4), 576.
26 Šebor G, Blažek J, Nemer M F. Journal of Chromatography A, 1999, 847(1), 323.
27 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
28 Bristow G M, Watson W F. Transactions of the Faraday Society, 1958, 54, 1742.
29 Hansen C M. Journal of Paint Technology, 1967, 39, 505.
30 Hansen C. Hansen solubility parameters: a user's handbook, second edition, CRC Press, Boca Raton, USA, 2012.
31 Gupta J, Nunes C, Vyas S, et al. Journal of Physical Chemistry B, 2011, 115(9), 2014.
32 Luo Y, Wang R, Wang W, et al. The Journal of Physical Chemistry C, 2017, 121(18), 10163.
33 Sun D, Lin T, Zhu X, et al. Computational Materials Science, 2016, 114, 86.
[1] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[2] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[3] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[4] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[5] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[6] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[7] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[8] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[9] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[10] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[11] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[12] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[13] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[14] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[15] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed