Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21050092-6    https://doi.org/10.11896/cldb.21050092
  金属与金属基复合材料 |
CFRP-铝合金板单、双搭接胶接接头刚度退化机理
邹田春, 李龙辉, 巨乐章, 符记, 李晔
中国民航大学适航学院,天津 300300
Stiffness Degradation Mechanism of Single and Double Lap Bonded Joints of CFRP-Aluminum Alloy Plates
ZOU Tianchun, LI Longhui, JU Yuezhang, FU Ji, LI Ye
College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 7860KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用碳纤维增强复合材料(CFRP)和铝合金在常温下制备不同搭接长度的单、双搭接胶接试验件,探究不同搭接长度下接头拉伸破坏特点与失效形貌。首先,利用电子万能试验机、数字图像相关(DIC)技术和扫描电子显微镜(SEM)进行拉伸试验,获得胶接接头载荷-位移曲线、表面应变分布和破坏形貌。其次,依据试验数据,利用仿真软件建立试验件模型,使用3D Hashin和内聚力模型(CZM)模拟复合材料与胶层的损伤,将仿真结果与试验结果对比,验证仿真模型的有效性,获得胶层和前三层树脂层的破坏形貌。最后,分析试验和仿真结果,对比单、双搭接接头应变分布特点与破坏过程,探究不同搭接长度下单、双搭接接头的失效机理。结果表明:单、双搭接接头应变分布差异较大,单搭接接头因受到剪切与剥离载荷的耦合作用而发生损坏,双搭接接头则受到纯剪切破坏。由于单、双搭接接头在拉伸载荷作用下的应变分布不同,两者的裂纹扩展路径有较大差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹田春
李龙辉
巨乐章
符记
李晔
关键词:  复合材料胶接  裂纹扩展  仿真分析  应变分布  数字图像相关    
Abstract: The single and double lap bonding samples with different lap lengths were prepared using carbon fiber reinforced plastics and aluminum alloys, to investigate the tensile failure characteristics and failure morphology of joints. Firstly,the electronic universal testing machine, digital image correlation (DIC) technology and scanning electron microscope (SEM) were used for tensile tests, obtaining the load-displacement curves, surface strain distribution and failure morphology of the joints. Secondly, the simulation software was used to build the sample models based on the experimental data. The 3D Hashin and cohesive zone model (CZM) were used to simulate the damage of the composite material and the adhesive layer. The simulation results were compared with the experiment results, to verify the effectiveness of the simulation model. At the same time, the failure morphology of the first three resin layers were obtained. Finally, the experiment and simulation results were analyzed to study the failure mechanism of single and double lap joints with different lap lengths, by comparing the difference between strain distribution characteristics and failure process of single and double lap joints. The results show that the strain distribution of the single lap joint is quite different from that of the double lap joint. Single lap joints are damaged by the coupling effect of shear and peel load, while double lap joints are damaged by pure shear. Under the tensile load, single lap joint and double lap joints show a considerable difference in the crack propagation path, due to the distinction of strain distribution.
Key words:  composite adhesive joint    crack propagation    FEM    strain field distribution    digital image correlation (DIC)
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(52071069)
通讯作者:  zoutianchun@126.com   
作者简介:  邹田春,中国民航大学安全科学与工程学院副教授、硕士研究生导师。1999年本科毕业于北京航空航天大学材料科学与工程专业,2002年硕士毕业于天津核工业理化工程研究院流体力学专业,2007年博士毕业于天津大学材料科学与工程专业。目前主要从事复合材料、增材制造等方面的研究工作。发表论文100余篇,包括Materials Letters、《航空学报》《中国激光》等。
引用本文:    
邹田春, 李龙辉, 巨乐章, 符记, 李晔. CFRP-铝合金板单、双搭接胶接接头刚度退化机理[J]. 材料导报, 2022, 36(19): 21050092-6.
ZOU Tianchun, LI Longhui, JU Yuezhang, FU Ji, LI Ye. Stiffness Degradation Mechanism of Single and Double Lap Bonded Joints of CFRP-Aluminum Alloy Plates. Materials Reports, 2022, 36(19): 21050092-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050092  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21050092
1 Brito C B G, Sales R C M, Donadon M V. International Journal of Adhesion and Adhesives, 2020, 26, 102607.
2 Wannapa N, Uthaisangsuk V. Composite Structures, 2020, 252, 112762.
3 Hu D Y, Yang Y, Guo X J, et al. Journal of Aerospace Power, 2019, 34(3), 608 (in Chinese).
胡殿印, 杨尧, 郭小军, 等. 航空动力学报, 2019, 34(3), 608.
4 Kang Y Q, Chen Y. Journal of Aerospace Power, 2020, 35(2), 388 (in Chinese).
康永强, 陈勇.航空动力学报, 2020, 35(2), 388.
5 Budhe S, Banea M D, De B S, et al. International Journal of Adhesion & Adhesives, 2017, 72, 30.
6 Mohee F M, Almayah A, Plumtree A. Composites Part B: Engineering, 2016, 90, 432.
7 Tao R, Li X, Yudhanto A, et al. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106094.
8 Demiral M, Kadioglu F. International Journal of Adhesion and Adhesives, 2018, 87, 181.
9 Martinsen K, Hu S J, Carlson B E. CIRP Annals-Manufacturing Techno-logy, 2015, 64, 679.
10 Kara E, Kursun A, Haboglu M R, et al. Proceedings of the Institution of Mechanical Engineers, 2015, 229, 1292.
11 Fiore V, Calabrese L, Proverbio E, et al. Composites Part B: Enginee-ring, 2017, 108, 65.
12 Kishore A N, Prasad N S. International Journal of Adhesion and Adhesives, 2012, 35, 55.
13 Purimpat S, Jerome R, Shahram A. Advanced Composite Materials, 2013, 22, 139.
14 Nurprasetio I P, Budiman B A, Aziz M. International Journal of Adhesion and Adhesives, 2018, 85, 193.
15 Lin P C, Lin J W, Li G X. International Journal of Advanced Manufactu-ring Technology, 2018, 97(1-4), 529.
16 Santos T F, Campilho R D S G. Finite Elements in Analysis and Design, 2017, 133, 1.
17 Peng D, Liu Q, Li G, et al. International Journal of Advanced Manufacturing Technology, 2019, 104(9-12), 4255.
18 Zhang L, Chen J, Qiu R K, et al. International Journal of Adhesion and Adhesives, 2020, 35(11), 2275 (in Chinese).
张龙, 程俊, 邱荣凯, 等. 航空动力学报, 2020, 35(11), 2275.
19 Liu X, Shao O X, Li Q, et al. Composites Part B: Engineering, 2019, 172, 339.
20 Cui J, Li Y, Liu Q, et al. Journal of Materials Processing Technology, 2019, 264, 273.
21 Cui J, Dong D, Zhang X, et al. International Journal of Impact Enginee-ring, 2018, 115, 1.
22 Zhang H, Dickson A, Sheng Y, et al. Composites Part B: Engineering, 2020, 186, 107835.
23 Wannapa N, Uthaisangsuk V. Composite Structures, 2020, 252, 112762.
24 Ye J, Ying Y, Li J, et al. Composite Structures, 2018, 201, 261.
25 Sun G, Liu X, Zhang G, et al. Composite Structures, 2018, 201, 1056.
26 Santos T F, Campilho R D S G. Finite Elements in Analysis & Design, 2017, 133, 1.
27 邹田春, 符记, 李龙辉. 中国专利, 202023261848. X, 2021.
28 ASTM D 5868-01.American Society of Testing Materials, 2019.
29 Hou Y, Tie Y, Li C, et al. Composites Part B, 2019, 163, 669.
30 Parida S K, Pradhan A K. Journal of Mechanical Science and Technology, 2014, 28(2), 481.
[1] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[2] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[3] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[4] 孟云蛟, 张有宏, 常新龙, 胡宽, 齐重阳, 王震, 朱雪蒙. 含双孔国产T800碳纤维复合材料层合板失效模式研究[J]. 材料导报, 2022, 36(14): 21030285-7.
[5] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[6] 陈守东, 卢日环, 陈子潘, 孙建, 李杰. 轧制单层晶铜箔滑移启动和应变局部化的晶体塑性模拟[J]. 材料导报, 2021, 35(4): 4170-4176.
[7] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[8] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[9] 邹田春, 秦嘉徐, 李龙辉, 符记, 刘志浩, 牟浩蕾. 钛合金-芳纶纤维复合材料单搭接接头渐进失效分析[J]. 材料导报, 2020, 34(20): 20143-20146.
[10] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[11] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[12] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[13] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[14] 郭萍, 赵永庆, 洪权, 毛小南, 侯红苗, 潘浩. TC4-DT钛合金疲劳裂纹扩展的微观机制[J]. 材料导报, 2019, 33(20): 3448-3451.
[15] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed