Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21050037-9    https://doi.org/10.11896/cldb.21050037
  无机非金属及其复合材料 |
稀土配合物-无机杂化发光材料研究进展
唐洋洋1, 李林波2, 王超2, 杨柳1, 杨潘1
1 西安建筑科技大学华清学院,西安 710045
2 西安建筑科技大学冶金工程学院,西安 710055
Research Progress of Rare Earth Complex-Inorganic Hybrid Luminescent Materials
TANG Yangyang1, LI Linbo2, WANG Chao2, YANG Liu1, YANG Pan1
1 Huaqing College, Xi'an University of Architecture and Technology,Xi'an 710045,China
2 College of Metallurgical Engineering,Xi'an University of Architecture and Technology, Xi'an 710055,China
下载:  全 文 ( PDF ) ( 7445KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土元素独特的4f亚层电子在一定的激发条件下具有丰富的能级跃迁,表现出优异的磁、光、电等性能,但稀土三价离子4f组态内跃迁是宇称禁戒的。将稀土离子引入某些晶格中或者结合有机配体形成稀土配合物,可提高其发光强度。稀土配合物易受外界环境影响,稳定性较差,将有机配体与无机基质连接制备高性能稀土杂化发光材料,应用潜力巨大。本文从结构组成、发光机理和合成方法等方面详细综述多种无机基质和稀土配合物杂化材料的研究现状,包括介孔二氧化硅、沸石、锂皂石、石墨烯及其衍生物、二氧化钛等。其次,介绍稀土无机杂化材料在硅太阳能电池、LED发光材料、信息防伪加密发光传感器和生物应用等不同领域的应用进展。最后,对稀土无机杂化工艺的发展趋势进行了展望,未来应探究稀土离子有机配体和无机基质的微观结构组成及作用机理,研究敏化性能良好有机配体的设计和组装,从而实现稀土无机杂化材料的高效利用和功能化发展,并实现工业化生产。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐洋洋
李林波
王超
杨柳
杨潘
关键词:  稀土配合物  无机基质  杂化发光材料  石墨烯    
Abstract: The rare earth metal elements show excellent magnetic, optical and electrical properties due to their unique 4f sublayer electrons, which have rich energy level transitions under certain excitation conditions, but the 4f configuration transition of rare earth trivalent ions is parity forbidden. The luminescence intensity can be improved by introducing the rare earth ions into some crystal lattices or combining with organic ligands to form rare earth complex. Rare earth complexes are susceptible to the external environment and have relatively poor stability. It has great application potential to prepare high-performance rare earth hybrid luminescent materials through connecting organic ligands with inorganic matrix. In this paper, the research status of the hybridization processes of various inorganic substrates and rare earth complexes, including mesoporous silicon dioxide, zeolite, lithium saponite, graphene and its derivatives, and titanium dioxide, is reviewed in detail from the perspectives of structure composition, luminescence mechanism and synthesis methods. Then, the application progress of rare earth inorganic hybrid materials in silicon solar cells, LED luminescent materials, information security encryption, luminescent sensors and biological applications are introduced. Finally, the research direction prospect of rare earth inorganic hybrid technology are discussed. In the fucture, the microstructure composition and action mechanism of rare earth ion organic ligands and inorganic matrix should be further explored. Moreover, the design and assembly of organic ligands with good sensitization performance were studied, so as to realize the efficient utilization and functional development of rare earth inorganic hybrid materials, and realize industrial production as well.
Key words:  rare earth complexes    inorganic substrate    hybrid luminescent materials    graphene
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TQ133.1  
基金资助: 陕西省科技统筹创新工程计划项目(2011KTDZ01-04-01);陕西省大学生创新创业训练计划(S202113679009);西安建筑科技大学华清学院2020年度专项科研计划项目(20KY02)
通讯作者:  yi-lilinbo@xauat.edu.cn   
作者简介:  唐洋洋,2012年6月本科毕业于西安建筑科技大学冶金工程专业,2015年6月于西安建筑科技大学钢铁冶金专业硕士毕业后到西安建筑科技大学华清学院工作至今。目前主要从事冶金新工艺、固废处理等方面的研究工作。申请专利2篇,发表论文20余篇。
引用本文:    
唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
TANG Yangyang, LI Linbo, WANG Chao, YANG Liu, YANG Pan. Research Progress of Rare Earth Complex-Inorganic Hybrid Luminescent Materials. Materials Reports, 2022, 36(19): 21050037-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050037  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21050037
1 Guo L, Fu L, Ferreira R, et al. Journal of Materials Chemistry, 2011,21(39), 15600.
2 Su Q. Journal of the Chinese Society of Rare Earths, 2015, 33(4), 385 (in Chinese).
苏锵. 中国稀土学报, 2015, 33(4), 385.
3 Hasegawa Y,Kitagawa Y,Nakanishi T. NPG Asia Material,2018,10, 52.
4 Zhang H J,Niu C J.Rare earth organic-inorganic hybrid luminescent materials, Science Press, China, 2014 (in Chinese).
张洪杰, 牛春吉. 稀土有机-无机杂化发光材料, 科学出版社, 2014.
5 Hu Bin, Yin Jun. Journal of The Chinese Rare Earth Society, 2006, 24(5), 513 (in Chinese).
胡斌, 殷俊.中国稀土学报, 2006, 24(5), 513.
6 Santos M A C D, Malta O L, Reisfeld R.Journal of Luminescence, 2016, 170, 271.
7 Furuya S, Nakano H, Yokoyama N, et al.Journal of Alloys and Compounds, 2015, 658, 147.
8 Tian Y, Chen B, Hua R, et al.Crystengcomm,2012, 14, 1760.
9 Song X, Chang M, Pecht M. Journal of Metals, 2013, 65(10), 1276.
10 Wang Y, Li P, Wang S F, et al. Journal of Rare Earths, 2019, 37(5), 451.
11 Zhang Q R,Yang X Y, Deng R P, et al. Molecules, 2019, 24(7), 1253.
12 Li H, Man L,Wang Y, et al. Chemistry—A European Journal, 2014, 20(33), 10392.
13 Yang D Q, Wang Y G, Wang Y, et al. ACS Applied Materials & Interfaces, 2015, 7(3), 2097.
14 Zhang X X, Zhang W J, Li G, et al.Optical Materials, 2019, 98, 1.
15 Zhang Q, Sheng Y, Zheng K Y, et al. Journal of Sol-Gel Science and Technology, 2016, 77, 152.
16 Ma J H, Wang T R, Liu C X, et al. Chinese Chemical Letters, 2018, 29(2), 321.
17 Levchenko V, Reisfeld R. Optical Materials, 2017, 74, 187.
18 Rocha L A, Freiria J D C, Caiut J M A, et al. Nanotechnology, 2015, 26(33), 335604.
19 Li P, Zhang Y Z, Wang Y G,et al.Chemical Communications, 2014, 50(89), 13680.
20 Feng J, Zhang H J.Chemical Society Reviews, 2013, 42(1), 387.
21 Yuan N, Liang Y, Erichsen E S, et al. RSC Advances, 2015, 5(82), 67077.
22 Xu X,Wang J M,Yan B. Advanced Functional Materials, 2021,31(37), 2103321.
23 Costa J A S, Jesus R A D, Dorst D D, et al. Journal of Luminescence, 2017, 192, 1149.
24 Li Y, Yan B, Li Y J. Journal of Solid State Chemistry, 2010, 183, 871.
25 Li Y, Zhang C Y, Hu H, et al. Journal of Porous Materials, 2016, 24, 487.
26 Li Y, Yan B, Li Y J. Microporous Mesoporous Materials, 2010, 132, 87.
27 Zhang J, Prabhakar N, Nareoja T, et al. ACS Applied Materials & Interfaces, 2014, 6, 19064.
28 Ma X K, Lee N H, Oh H, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358, 172.
29 Sun L N,Yu J B,Zhang H J, et al. Microporous Mesoporous Materials, 2007, 98(1-3), 156.
30 Zhang D J, Tang D H, Wang X M, et al. Dalton Transactions, 2011, 40, 9313.
31 Guo X, Guo H, Fu L,et al. Microporous Mesoporous Materials, 2009, 119, 252.
32 Yuan N, Liang Y, Erichsen E S, et al. RSC Advances, 2015, 5, 83368.
33 Liu H H, Song H, Li S, et al. Journal of Nanoscience and Nanotechnology, 2008, 8(8), 3959.
34 Li Q P, Yan B. Journal of Rare Earths, 2019, 37, 113.
35 Li H R, Li P. Chemical Communications, 2018, 54(99), 13884.
36 Li H R, Ding Y X, Cao P P, et al. Journal of Materials Chemistry, 2012, 22(9), 4056.
37 Cao P, Li H R, Zhang P,et al. Langmuir, 2011, 27(20), 12614.
38 Wang Y G, Yue Y P, Li H R,et al. Photochemical and Photobiological Sciences, 2011, 10(1), 128.
39 Li H R, Zhang H H, Wang L Y, et al. Journal of Materials Chemistry, 2012, 22(18), 9338.
40 Monguzzi A, Macchi G, Meinardi F, et al. Applied Physics Letters, 2008, 92(12), 109.
41 Mech A, Monguzzi A, Meinardi F,et al. Journal of the American Chemical Society, 2010, 132(13), 4574.
42 Han Z S, Shi W, Cheng P.Journal of the Chinese Rare Earth Society, 2021, 39(1), 110 (in Chinese).
韩宗甦, 师唯, 程鹏.中国稀土学报, 2021, 39(1), 110.
43 Xu W T, Zhou Y F, Huang D C,et al. Journal of Materials Chemistry C, 2015, 3(9), 2003.
44 Yang D, Wang J, Li H R. Dyes and Pigments, 2015, 118, 53.
45 Zhu Y, Murali S, Cai W, et al. Advanced Materials, 2010, 22, 3906.
46 Dong H, Gao W, Yan F, et al. Analytical Chemistry, 2010, 82(13), 5511.
47 Wang Y, Kurunthu D, Scott G W, et al. The Journal of Physical Chemistry C, 2010, 114(9), 4153.
48 Li Y T, Qiu S, Du T, et al. Inorganic Chemistry, 2019, 35, 174.
49 Zhao Y C, Huang L J, Wang Y X, et al. Journal of Alloys And Compounds, 2016, 687, 9.
50 Xu Y, Shi G. Journal of Materials Chemistry, 2011, 21(10), 3311.
51 Zhang X X, Zhang W J, Li Y J, et al. Dyes and Pigments, 2017, 140, 150.
52 Zhang D D, Wen L, Huang R, et al. Biomaterials, 2018, 153, 14.
53 Choi S Y, Baek S H, Chang S J,et al. Biosensors and Bioelectronics, 2017, 93, 267.
54 Mihelčič M, Gaberšček M, Gabriella D G,et al. Applied Surface Science, 2019, 467, 912.
55 Hu H, Li Y. Nonferrous Metal Materials and Engineering. 2018, 39(2), 23(in Chinese).
胡皓, 李颖. 有色金属材料与工程, 2018, 39(2), 23.
56 Nabais A R, Martins A P, Alves V D, et al. Separation and Purification Technology, 2019, 222, 168.
57 Xu Q, Zheng Z, Wang B, et al. ACS Applied Materials & Interfaces, 2017,9(17), 14656.
58 Wu B, Zhang W L, Gao N, et al. Scientific Reports, 2017,7(1),13973.
59 Dang H X, Lia Y, Zou H, et al. Dyes and Pigments, 2020, 172, 107804.
60 Zhou F, Ren X H, Liu J Y,et al. Journal of Materials Engineering, 2018, 46(10), 9(in Chinese).
周锋, 任向红, 刘建友, 等.材料工程, 2018, 46(10), 9.
61 Li J, Ni G, Han Y,et al. Journal of Materials Science:Materials in Electronics, 2017, 28, 10148.
62 Bao Ruiyu, Yu Yanmin, Chen Huiying,et al. Crystal Research and Technology, 2018, 53, 1700138.
63 Liu Y B, Zhu G Q, Gao J Z,et al. Applied Catalysis B: Environmental, 2017, 205, 421.
64 Absalan Y, Bratchikova I G, Kovalchukova O V. Journal of Molecular Liquids, 2018, 268, 882.
65 Pihosh Y, Turkevych I, Mawatari K, et al. Nanotechnology, 2014, 25, 315.
66 Huang X Y, Han S Y, Huang W,et al. Chemical Society Review, 2013, 42, 173.
67 Wang Y, Gawryszewska-Wilczynsk P, Zhang X R, et al. Science China Materials, 2020, 63, 544.
68 Correia S F H, Bastos A R N, Fu L S, et al. Opto-Electronic Advances, 2019, 2(6), 190006.
69 Wada Y J, Sato M, Tsukahara Y.Angewandte Chemie International Edition, 2006, 45(12), 1925.
70 Li Z Q, Chen H Z, Li B, et al. Advanced Science, 2019, 6(21), 1501529.
71 Li Z Q, Li P, Xu Q Q, et al. Chemical Communications, 2015, 51, 10644.
72 Yang D Q, Wang Y G, Wang Y J, et al. Sensors and Actuators B: Che-mical, 2016, 235(1), 206.
73 Chen X, Wang Y R, Chai R, et al. ACS Applied Materials & Interfaces, 2017, 9(15), 13554.
74 Kaczmarek A M, Van Der Voort P. Journal of Materials Chemistry C, 2019, 7, 8109.
75 Qu F, Ding Y R, Lyu X X, et al. Analytical and Bioanalytical Chemistry, 2019, 411(17), 3979.
76 Liu Y, Xie X Y, Cheng C, et al. Journal of Materials Chemistry C, 2019, 7(35), 10743.
[1] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[2] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[3] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[4] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[5] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[6] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[7] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[8] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[9] 贾冉, 许士才, 刘汉平, 刘辉兰, 乔梅, 刘国锋. 石墨烯光致掺杂研究进展[J]. 材料导报, 2022, 36(18): 20080248-14.
[10] 邓凯文, 牛荣军, 孙小波, 郭军力, 邓四二. 石墨烯改性多孔聚酰亚胺轴承保持架材料性能研究[J]. 材料导报, 2022, 36(17): 21030176-5.
[11] 汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
[12] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[13] 张帆, 纪志永, 汪婧, 郭志远, 方嘉炜, 郭小甫, 赵颖颖, 刘杰, 袁俊生. GO/LiMn2O4膜电极构建及其提锂性能研究[J]. 材料导报, 2022, 36(11): 21040052-7.
[14] 陈丽, 黄银, 于元烈. 石墨烯基纳米复合薄膜及其摩擦学研究进展[J]. 材料导报, 2022, 36(11): 20090218-8.
[15] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed