Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21040052-7    https://doi.org/10.11896/cldb.21040052
  无机非金属及其复合材料 |
GO/LiMn2O4膜电极构建及其提锂性能研究
张帆1,2,3, 纪志永1,2,3,4, 汪婧1,2,3, 郭志远1,2,3, 方嘉炜1,2,3, 郭小甫1,2,3, 赵颖颖1,2,3, 刘杰1,2,3, 袁俊生1,2,3
1 河北工业大学化工学院,化工节能过程集成与资源利用国家-地方联合工程实验室,天津 300130
2 河北工业大学化工学院,海水资源高效利用化工技术教育部工程研究中心,天津 300130
3 河北省现代海洋化工技术协同创新中心,天津 300130
4 河北工业大学化工学院,天津市本质安全化工技术重点实验室,天津 300130
Study on the Preparation of GO/LiMn2O4 Film Electrode and Its Lithium Extraction Property
ZHANG Fan1,2,3, JI Zhiyong1,2,3,4, WANG Jing1,2,3, GUO Zhiyuan1,2,3, FANG Jiawei1,2,3, GUO Xiaofu1,2,3, ZHAO Yingying1,2,3, LIU Jie1,2,3, YUAN Junsheng1,2,3
1 National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
2 Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
3 Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China
4 Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 8320KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 实现盐湖卤水、地热水、海水等溶存态锂资源的高效提取对于满足强劲的锂产品市场需求至关重要。电化学吸附是一种低成本、环境友好的提锂技术,极具发展前景。本工作基于LiMn2O4材料,通过分别掺入常规氧化石墨烯(CGO)、低缺陷氧化石墨烯(LDGO)和大片径氧化石墨烯(LGO),制备CGO-LiMn2O4、LDGO-LiMn2O4和LGO-LiMn2O4膜电极,并对其提锂性能进行考察。结果表明,不同氧化石墨烯(GO)的掺入均有利于提升膜电极的提锂容量、提锂速率及对Li+的选择性;掺入LGO的膜电极表现出最优的提锂性能,提锂容量达到35.29 mg/g,提锂速率达1.044 mg/(g·min),镁锂分离系数高达588.30。结合分析与表征认为,GO由于具有较大的比表面,可为膜电极表面提供更多的“有效锂离子”,使得提锂容量有效提升;同时,阳离子嵌入GO片层后固定层间距,进而阻挡大半径离子进入,使得其对Li+的选择性提高;因LGO具有更大的片径和更高的石墨化度,使得对应膜电极的导电性更好,整体提锂效果更优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张帆
纪志永
汪婧
郭志远
方嘉炜
郭小甫
赵颖颖
刘杰
袁俊生
关键词:  氧化石墨烯  锰酸锂  选择性  电化学吸附    
Abstract: It is essential to achieve efficient lithium extraction to meet the market demand of lithium products from salt lake brine, geothermal water and seawater. Electrochemical adsorption is a low-cost and environment-friendly technology for lithium extraction, which has great development prospects. Based on the LiMn2O4 material, CGO-LiMn2O4, LDGO-LiMn2O4 and LGO-LiMn2O4 were prepared by doping conventional graphene oxide (CGO),low defect graphene oxide (LDGO) and large diameter graphene oxide LGO), respectively, and their lithium extraction properties were investigated as well. The results showed that the addition of different graphene oxide (GO) was beneficial to improving the lithium extraction rate, lithium extraction capacity and Li+ selectivity of film electrodes. The film electrode doped with LGO showed the best lithium extraction perfor-mance, the lithium extraction capacity of 35.29 mg/g, the lithium extraction rate of 1.044 mg/(g·min) and the separation coefficient from Mg to Li of 588.30. Combined with the analysis and characterization, it was considered that GO had a large specific surface area, which could provide more ‘Effective lithium ions' for the film electrode surface, thus effectively improving the lithium extraction capacity; at the same time, after the cation was embedded in the GO layer, the layer spacing was fixed, which could block the entry of large radius ions and improve the selectivity for Li+. Because LGO had larger plate diameter and higher graphitization degree, the conductivity of the corresponding film electrode was better, and the overall lithium extraction effect was better.
Key words:  graphene oxide    lithium manganate    selectivity    electrochemical adsorption
发布日期:  2022-06-09
ZTFLH:  TQ15  
基金资助: 国家自然科学基金(21978064);河北省自然科学基金(B2019202423);天津市自然科学基金(19JCYBJC20400)
通讯作者:  jizhiyong@gmail.com   
作者简介:  张帆,2018年6月毕业于河北科技大学,获得工学学士学位。现为河北工业大学化工学院的硕士研究生,指导老师是纪志永教授。主要研究方向是溶存化学资源利用与环境保护。
纪志永,教授,博士研究生导师。2001年本科毕业于河北工业大学化工学院化工工艺专业,2004年硕士毕业于河北工业大学化工学院化学工艺专业,2007年博士毕业于天津大学化学工程专业。2007年4月至今,先后在河北工业大学化工学院、海水利用中心和海洋科学与工程学院从事教学科研工作。研究方向为海/卤水及废水中钾、锂、溴等分离纯化及能源挖掘,含盐废水的深度处理与资源化利用及减量化处置,水环境监测与修复及水质基准研究。在国内外重要期刊发表科技论文82篇(SCI/EI收录46篇),参与出版著作1部。
引用本文:    
张帆, 纪志永, 汪婧, 郭志远, 方嘉炜, 郭小甫, 赵颖颖, 刘杰, 袁俊生. GO/LiMn2O4膜电极构建及其提锂性能研究[J]. 材料导报, 2022, 36(11): 21040052-7.
ZHANG Fan, JI Zhiyong, WANG Jing, GUO Zhiyuan, FANG Jiawei, GUO Xiaofu, ZHAO Yingying, LIU Jie, YUAN Junsheng. Study on the Preparation of GO/LiMn2O4 Film Electrode and Its Lithium Extraction Property. Materials Reports, 2022, 36(11): 21040052-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040052  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21040052
1 Wang H Y, Zhong Y, Du B Q, et al.Hydrometallurgy,2018,175,102.
2 Liu W J, Agusdinata D B.Journal of Cleaner Production,2020,260(12),120838.
3 Guo Z Y, Ji Z Y, Chen Q B,et al. Journal of Cleaner Production, 2018, 193, 338.
3 Shao L G, Jin S Z.Journal of Cleaner Production, 2020, 252(9), 119624.
5 Su T, Guo M, Liu Z, et al.Journal of Salt Lake Research, 2019, 27(3), 104(in Chinese).
苏彤, 郭敏, 刘忠, 等.盐湖研究, 2019, 27(3), 104.
6 Zhang Y, Xu R, Sun W, et al. Separation and Purification Technolgy, 2020, 250, 117234.
7 Zhao X Y, Yang H C, Wang Y F, et al. Journal of Electroanalytical Chemistry, 2019, 850, 113389.
8 Calvo E J. Current Opinion in Electrochemistry, 2019, 15 (1), 102.
9 He M Y, Luo C G, Yang H J, et al.Ore Geology Reviews, 2020, 117, 103277.
10 Yu J Q, Gao C L, Cheng A Y, et al.Ore Geology Review, 2013, 50, 171.
11 Ding T, Zheng M P, Zhang X F, et al.Science & Technology Review, 2020, 38(15), 16(in Chinese).
丁涛, 郑绵平, 张雪飞,等. 科技导报, 2020, 38(15), 16.
12 Gandoman F H, Jaguemont J, Goutam S, et al.Applied Energy, 2019, 251(1), 113343.
13 Ma S, Jiang M D, Tao P, et al.Progress in Natural Science: Materials International, 2018, 28(6), 653.
14 Zhao M Y, Ji Z Y, Zhang Y G, et al.Electrochimica Acta, 2017, 252, 350.
15 Scalese S, Baldo S, D′Angelo D, et al. Journal of Applied Physics, 2017, 121(15), 155105.
16 Zhang H, Du X, Ding S, et al. Physical Chemistry Chemical Physics, 2019, 21 (15), 8133.
17 Zhao M Y.Study on the extraction of lithium by electrochemical method based on LiMn2O4. Master's Thesis, Hebei University of Technology, China, 2017(in Chinese).
赵孟瑶. 基于LiMn2O4的电化学法提锂研究. 硕士学位论文, 河北工业大学, 2017.
18 Ji Z Y, Zhao M Y, Yuan J S, et al. Solvent Extraction and Ion Exchange, 2016, 34(6), 549.
19 Dresselhaus M S, Dresselhaus G, Saito R, et al. Physics Reports-Review Section of Physics Letters, 2005, 409(2), 47.
20 Ramesha G K, Sampath S. Journal of Physical Chemistry C, 2009, 113(19), 7985.
21 Aunkor M T H, Mahbubul I M, Saidur R, et al.RSC Advances, 2016, 6, 27807.
22 Zhang F Q, Huang Q Z, Huang B Y, et al.New Carbon Materials, 2001(2), 45(in Chinese).
张福勤, 黄启忠, 黄伯云,等. 新型炭材料, 2001(2),45.
23 Ni Z H, Yu T, Lu Y H, et al. ACS Nano, 2008, 2(11), 2301.
24 Weisenberger M, Martin-Gullon I, Vera-Agullo J.Carbon, 2009, 47, 2211.
25 Jankovsky O, Lojka M, Jirickova A, et al.Materials, 2020, 13(8), 2006.
26 Bian G. Design of graphene oxide-based composites and study on their catalytic performances. Master's Thesis, Jiangnan University, China, 2018(in Chinese).
卞刚. 氧化石墨烯复合材料的构建及其催化性能研究, 硕士学位论文, 江南大学, 2018.
27 Eda G, Lin Y Y, Mattevi C, et al. Advanced Materials, 2010, 22(4),505.
28 Zhang Z H, Yang W M, Cheng L S, et al. ACS Sustainable Chemistry & Engineering, 2020, 8 (48), 17629.
29 Xu Y Y. Analysis on the electrochemical reduction process of graphene oxide and its electrocatalytic application. Master's Thesis, Shandong University, China, 2015(in Chinese).
胥燕燕. 氧化石墨烯电化学还原过程分析及其电催化应用,硕士学位论文.山东大学, 2015.
30 Sieradzka M, Slusarczyk C, Fryczkowski R, et al. Journal of Materials Research and Technology, 2020, 9(4), 7059.
31 Chen L, Shi G S, Shen J, et al.Nature, 2017, 550(7676), 415.
32 Guo Z Y, Ji Z Y, Chen H Y, et al.ACS Sustainable Chemistry & Engineering, 2020, 8(31), 11834.
33 Reddy Channu V S, Ravichandran D, Rambabu B, et al. Applied Surface Science, 2014, 305, 596.
34 Zhao X Y, Jiao Y X, Xue P J, et al.ACS Sustainable Chemistry & Engineering, 2020, 8(12), 4827.
35 Guo D L, Chang Z R, Tang H W, et al. Electrochimica Acta, 2014, 123, 254.
[1] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[2] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[3] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[4] 苏梁, 陈良军, 李杰, 万勇. 含铬铁水脱磷的研究进展[J]. 材料导报, 2022, 36(7): 20070103-8.
[5] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[6] 胡连军, 刘建军, 潘国峰, 曹静伟, 夏荣阳. 钴化学机械抛光的研究进展[J]. 材料导报, 2022, 36(4): 20090178-10.
[7] 万中伊欣, 刘东青, 余金山. 日间辐射制冷材料研究进展[J]. 材料导报, 2022, 36(3): 20100091-9.
[8] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[9] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[10] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[11] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[12] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[13] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[14] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[15] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed