Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20090178-10    https://doi.org/10.11896/cldb.20090178
  金属与金属基复合材料 |
钴化学机械抛光的研究进展
胡连军1,2, 刘建军3, 潘国峰1,2,*, 曹静伟1,2, 夏荣阳1,2
1 河北工业大学电子信息工程学院,天津 300130
2 天津市电子材料与器件重点实验室,天津 300130
3 北京智芯微电子科技有限公司,北京 100192
Research Progress of Cobalt Chemical Mechanical Polishing
HU Lianjun1,2, LIU Jianjun3, PAN Guofeng1,2,*, CAO Jingwei1,2, XIA Rongyang1,2
1 School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300130, China
2 Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300130,China
3 Beijing Smartchip Microelectronics Technology Company Limited, Beijing 100192, China
下载:  全 文 ( PDF ) ( 5549KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当技术节点降低至32 nm及以下时,为了缓解电阻-电容(RC)延迟导致的铜(Cu)互连器件可靠性差的问题,急需寻找新的阻挡层材料。与钽(Ta)相比,钴(Co)具有更低的电阻率、更小的硬度、与Cu更好的粘附性、在高纵横比沟槽中能实现保形沉积等优点。因此,Co成为取代Ta的有前途的衬里材料而被堆叠在氮化钽(TaN)阻挡层上。Co的引入可以降低阻挡层厚度和简化工艺过程。
然而,当技术节点降低至10 nm及以下时,金属线宽度接近甚至小于Cu的电子平均自由程。由于侧壁和晶界处电子散射的增加,Cu的电阻率开始急剧增加。与Cu相比,Co的电子平均自由程更低且可以在阻挡层更薄的情况下工作。因此,Co成为替代中段制程(MOL)中接触金属W和后段制程(BEOL)中互连金属Cu的绝佳候选材料。
Co的引入势必需要与化学机械抛光(CMP)以及CMP后清洗等相兼容的工艺。然而,与多层Cu互连Co基阻挡层CMP以及Co互连CMP相兼容的抛光液作为商业机密一直未被公开。同时,学术界对Co的CMP也缺乏系统而全面的研究。本文就Co作为Cu互连阻挡层和互连金属的有效性及可行性进行了系统论述,重点综述了Co基阻挡层和Co互连CMP的研究现状,讨论了不同化学添加剂对材料去除速率、腐蚀防护、电偶腐蚀和去除速率选择性的影响。同时,本文对Co CMP所面临的问题与挑战进行了总结,以期为Co基阻挡层以及Co互连CMP浆料的开发提供有价值的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡连军
刘建军
潘国峰
曹静伟
夏荣阳
关键词:  化学机械抛光    阻挡层  互连金属  电偶腐蚀  选择性    
Abstract: When the technology node is reduced to 32 nm or below, new barrier layer materials are urgently needed to alleviate the problem of poor reliability of copper (Cu) interconnection devices caused by resistance-capacitance (RC) delay. Compared with tantalum (Ta), cobalt (Co) has the advantages of lower resistivity, smaller hardness, better adhesion to Cu, and conformal deposition in high aspect ratio trenches. Therefore, Co becomes a promising liner material to replace Ta and is stacked on the tantalum nitride (TaN) barrier layer. The introduction of Co can reduce the thickness of the barrier layer and simplify the process.
However, when the technology node is reduced to 10 nm and below, the metal line width approaches or even becomes smaller than the electron mean free path of Cu. Due to the increase in electron scattering at the sidewalls and grain boundaries, the resistivity of Cu begins to increase sharply. Compared with Cu, Co has a lower electron mean free path and can work with a thinner barrier. Therefore, Co becomes an excellent candidate material to replace the contact metal tungsten in the middle of line (MOL) and the interconnect metal copper in the back end of line (BEOL).
The introduction of Co will inevitably require processes that are compatible with chemical mechanical polishing (CMP) and cleaning after CMP. However, the slurry formulation (as a trade secret) compatible with the multi-layer Cu interconnection Co-based barrier layer CMP and the Co interconnection CMP has not been disclosed. At the same time , the academic circles lack systematic and comprehensive research on Co CMP. This paper systematically discusses the effectiveness and feasibility of Co as the Cu interconnection barrier and the interconnection metal. The research status of Co-based barrier layer and Co interconnection CMP is mainly reviewed, and the influence of different chemical additives on material removal rate, corrosion protection, galvanic corrosion and removal rate selectivity is discussed. At the same time, the problems and challenges faced by Co CMP are summarized to provide a valuable reference for the development of Co-based barrier layer and Co interconnect CMP slurry.
Key words:  chemical mechanical polishing    cobalt    barrier layer    interconnect metal    galvanic corrosion    selectivity
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TN305. 2  
  TN304. 12  
基金资助: 国家科技重大专项(2016ZX02301003-004-007);河北省自然科学基金(F2020202067)
通讯作者:  pgf@hebut.edu.cn   
作者简介:  胡连军,2018年3月毕业于华北理工大学,获得硕士学位。现为河北工业大学电子信息工程学院博士研究生,在潘国峰教授的指导下进行研究。目前主要研究领域为微电子材料与技术。
潘国峰,河北工业大学电子信息工程学院教授、博士研究生导师。1994年7月本科毕业于成都理工大学地球科学学院,1997年7月硕士毕业于成都理工大学材料与化学化工学院,2008年6月在河北工业大学微电子学与固体电子学专业取得博士学位。从2000年3月至今,主要从事微电子材料与技术、敏感器件及性能研究、半导体测试理论与技术等领域的研究工作,曾主持国家科技重大专项课题“新型碱性CMP抛光液及清洗剂检测方法及检测标准研究”(2009zx308-004)等国家、省部级课题多项。近年来,发表微电子材料与技术领域SCI检索期刊论文10余篇,授权发明专利10余项。
引用本文:    
胡连军, 刘建军, 潘国峰, 曹静伟, 夏荣阳. 钴化学机械抛光的研究进展[J]. 材料导报, 2022, 36(4): 20090178-10.
HU Lianjun, LIU Jianjun, PAN Guofeng, CAO Jingwei, XIA Rongyang. Research Progress of Cobalt Chemical Mechanical Polishing. Materials Reports, 2022, 36(4): 20090178-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090178  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20090178
1 Steigerwald J M, Murarka S P, Gutmann R J, et al. Materials Chemistry & Physics, 1995, 41(3), 217.
2 Lloyd J R, Clemens J, Snede R.Microelectronics Reliability, 1999, 39(11), 1595.
3 Latt K M, Sher-yi C, Osipowicz T, et al. Journal of Materials Science, 2001, 36(23), 5705.
4 Wang Y S, Hung C C, Lee W H, et al. Thin Solid Films, 2008, 516(16),5241.
5 Janjam S V S B, Peethala B C, Roy D, et al. Electrochemical and Solid-State Letters, 2010, 13(1), H1.
6 SungW L, Chiou B S. Journal of Electronic Materials, 2002, 31(5), 472.
7 Stavrev M, Fischer D. Journal of Vacuum Science & Technology A, 1999, 17(3), 993.
8 Yang C C, Cohen S, Shaw T, et al. IEEE Electron Device Letters, 2010, 31(7), 722.
9 Rhoades R L.Future Fab International, 2008, 24, 76.
10 Lin Q, He F F, Chen C. Journal of Functional Materials and Devices, 2017, 23(1), 8(in Chinese).
林倩, 贺菲菲, 陈超. 功能材料与器件学报, 2017, 23(1), 8.
11 Grill A, Gates S M, Ryan T E, et al. Applied Physics Reviews, 2014, 1(1), 011306.
12 Li Z, Gordon R G, Farmer D B, et al. Electrochemical and Solid-State Letters, 2005, 8(7), G182.
13 Peethala B C, Amanapu H P, Lagudu U R K, et al. Journal of the Electrochemical Society, 2012, 159(6), H582.
14 Ma P, Luo Q, Sundarrajan A, et al. In: 2009 IEEE International Interconnect Technology Conference. Sapporo, Japan, 2009, pp. 38.
15 Josell D, Brongersma S H, Tökei Z.Annual Review of Materials Research, 2009, 39(1), 231.
16 Roberts J M, Kaushik A P, Clarke J S. In: 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM). Grenoble, 2015, pp. 341.
17 Kelly J,Chen J H C, Huang H, et al. In: IEEE International Interconnect Technology Conference/Advanced Metallization Conference. San Jose, 2016, pp. 40.
18 Mont F W, Zhang X, Wang W, et al. In: 2017 IEEE International Interconnect Technology Conference (IITC). Taiwan,China, 2017, pp. 1.
19 Jiang Y, Nalla P, Matsushita Y, et al. In: 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC). San Jose, 2016, pp. 111.
20 Kamineni V, Raymond M, Siddiqui S, et al. In: 2016 IEEE Internatio-nal Interconnect Technology Conference/Advanced Metallization Confe-rence (IITC/AMC). San Jose, 2016, pp. 105.
21 Lane M W, Murray C E, Mcfeely F R, et al. Applied Physics Letters, 2003, 83(12), 2330.
22 Huang H Y, Hsieh C H, Jeng S M. In: 2010 IEEE International Interconnect Technology Conference. Burlingame, 2010, pp. 1.
23 Jung H K, Lee H B, Tsukasa M, et al. In: 2011 International Reliability Physics Symposium. Monterey, 2011, pp. 3E.2.1.
24 Xu W Z, Xu J B, Lu H S, et al. Journal of the Electrochemical Society, 2013, 160(12), D3075.
25 He M, Zhang X, Nogami T,et al. Journal of the Electrochemical Society, 2013, 160(12), D3040.
26 Nishizawa H, Nojo H, Isobe A. Japanese Journal of Applied Physics, 2010, 49(5), 5FC03.
27 Heylen N, Yunlong L, Kellens K, et al. In: 2010 IEEE International Interconnect Technology Conference. Burlingame, 2010, pp. 1.
28 Lu H S, Zeng X, Wang J X, et al. Journal of the Electrochemical Society, 2012, 159(9), C383.
29 Lu H S, Wang J X, Zeng X, et al. Electrochemical and Solid-State Letters, 2012, 15(4), H97.
30 Jiang L, He Y, Li Yan, et al. Microelectronic Engineering, 2014, 122, 82.
31 Zhang W, Liu Y, Wang C, et al. ECS Journal of Solid State Science and Technology, 2017, 6(12), P786.
32 He P, Yang G, Qu X. In: 2017 International conference on planarization/CMP technology. Leuven, 2017, pp. 32.
33 Sagi K V, Teugels L G, Van Der Veen M H, et al. ECS Journal of Solid State Science and Technology, 2017, 6(5), P276.
34 Johnson C A, Wei S, Roy D. ECS Journal of Solid State Science and Technology, 2018, 7(2), P38.
35 He P, Wu B, Shao S, et al. ECS Journal of Solid State Science and Technology, 2019, 8(5), P3075.
36 Yang S, Zhang B, Zhang Q, et al. ECS Journal of Solid State Science and Technology, 2019, 8(8), P416.
37 Hu L, Pan G, Zhang X, et al. ECS Journal of Solid State Science and Technology, 2019, 8(8), P437.
38 Hu L, Pan G, Li C, et al. Materials Science in Semiconductor Processing, 2020, 108, 104883.
39 Hu L, Pan G, Xu Y, et al. ECS Journal of Solid State Science and Technology, 2020, 9, 34007.
40 Hu L, Pan G, Wang H, et al. Materials Chemistry and Physics, 2020, 256, 123672.
41 Zhang X, Pan G, Hu L, et al. Colloids and Surfaces A, 2020, 605, 125392.
42 Zhang L, Wang T, Lu X. Journal of Materials Science, 2020, 55(21), 8992.
43 Gall D.Journal of Applied Physics, 2016, 119(8), 85101.
44 Bekiaris N, Wu Z, Ren H, et al. In: 2017 IEEE International Interconnect Technology Conference (IITC). Taiwan,China, 2017, pp. 1.
45 Kamineni V, Raymond M, Siddiqui S, et al. In: 2016 IEEE Internatio-nal Interconnect Technology Conference/Advanced Metallization Confe-rence (IITC/AMC). San Jose, 2016, pp. 105.
46 Kelly J, Chen J H C, Huang H, et al. In: 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC). San Jose, 2016, pp. 40.
47 Wu C, Han J H, Shi X, et al. ECS Transactions, 2017, 77(5), 93.
48 Popuri R, Sagi K V, Alety S R, et al. ECS Journal of Solid State Science and Technology, 2017, 6(9), P594.
49 Popuri R, Amanapu H, Ranaweera C K, et al. ECS Journal of Solid State Science and Technology, 2017, 6(12), P845.
50 Tian Q, Wang S, Xiao Y, et al. ECS Journal of Solid State Science and Technology, 2018, 7(8), P416.
51 Ranaweera C K, Baradanahalli N K, Popuri R, et al. ECS Journal of Solid State Science and Technology, 2019, 8(5), P3001.
52 Cheng Y, Wang S, Wang C, et al. ECS Journal of Solid State Science and Technology, 2020, 9, 44014.
[1] 万中伊欣, 刘东青, 余金山. 日间辐射制冷材料研究进展[J]. 材料导报, 2022, 36(3): 20100091-9.
[2] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[3] 王小玉. 四氧化三钴纳米材料制备路线的研究进展[J]. 材料导报, 2021, 35(z2): 64-67.
[4] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[5] 王书明, 张华, 左玉婷, 曹瑞军. 钴的相变织构及微观结构研究[J]. 材料导报, 2021, 35(Z1): 378-380.
[6] 温俊霞, 余磊, 曹睿, 车洪艳, 王铁军, 董浩, 闫英杰. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(Z1): 381-385.
[7] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[8] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[9] 段鹏, 彭燕, 王希玮, 韩晓桐, 王笃福, 胡小波, 徐现刚. 用于MPCVD金刚石薄膜生长的高表面质量HTHP金刚石的制备[J]. 材料导报, 2021, 35(4): 4034-4037.
[10] 穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
[11] 吴海华, 张成, 钟磊, 刘力, 李亚峰, 贺俊超. 球形石墨粉末及后处理工艺对SLS石墨原型件的影响[J]. 材料导报, 2021, 35(24): 24047-24051.
[12] 王龙飞, 安丽琼, 孙凯, 范润华. 碳化物超高温陶瓷太阳能选择性吸收涂层的研究进展[J]. 材料导报, 2021, 35(23): 23033-23039.
[13] 王成志, 高凤雨, 于庆君, 易红宏, 倪书权, 唐晓龙. 三聚氰胺海绵基高效柔性脱硝催化材料的合成及性能研究[J]. 材料导报, 2021, 35(21): 21079-21084.
[14] 张峙, 李飞, 胡琳琪, 郑安应, 佘跃惠, 张文达. 油气工业生物及化学硫化氢清除剂研究进展[J]. 材料导报, 2021, 35(17): 17185-17189.
[15] 孙义民, 易荣华, 段纪青, 周爱军. 基于有序结构镍钴双金属氧族化合物纳米阵列/碳泡沫复合材料的柔性不对称超级电容器[J]. 材料导报, 2021, 35(16): 16001-16007.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed