Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23033-23039    https://doi.org/10.11896/cldb.20070190
  无机非金属及其复合材料 |
碳化物超高温陶瓷太阳能选择性吸收涂层的研究进展
王龙飞, 安丽琼, 孙凯, 范润华
上海海事大学海洋科学与工程学院,上海 201306
Research Progress on Ultra-high Temperature Carbide Ceramics Selective Absorbing Coatings for Solar Energy
WANG Longfei, AN Liqiong, SUN Kai, FAN Runhua
College of Ocean Science and Engineering, Shanghai Maritime University,Shanghai 201306, China
下载:  全 文 ( PDF ) ( 2816KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能选择性吸收涂层是将太阳辐射选择性吸收转化成热能的材料。为更大限度地利用太阳能,高温太阳能选择性吸收涂层成为提高光热转化效率的关键部件。碳化物超高温陶瓷因具有良好的光学性能和高温稳定性而成为优选材料。目前,很多研究者已通过磁控溅射法、热喷涂法、溶胶凝胶法和激光涂覆法等方法制备了多种碳化物陶瓷基太阳能选择性吸收涂层,并且做了大量的工作来优化其性能。本文综述了碳化物陶瓷基太阳能选择性吸收涂层的研究进展,介绍了太阳能光谱选择性的要求及其选择性吸收的基本原理,总结了碳化物陶瓷基太阳能选择性吸收涂层的制备方法、材料、性能及其重要影响因素,最后展望了碳化物超高温陶瓷太阳能选择性吸收涂层的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王龙飞
安丽琼
孙凯
范润华
关键词:  太阳能  碳化物  超高温陶瓷  太阳能选择性吸收涂层    
Abstract: The solar selective absorbing coating can convert solar radiation absorption into heat. In order to make full use of solar energy, high temperature selective absorbing coatings are the key components to improve photo-thermal conversion efficiency. Ultra-high temperature carbide ceramic coatings are promising because of their excellent optical properties and high temperature stability. At present, a variety of carbon-based ceramic solar selective absorbing coatings were prepared by magnetron sputtering, spray, sol-gel and laser coating methods, and many studies have been done to optimize their properties. In this paper, the research progress of solar selective absorbing coatings is reviewed. Firstly, the solar spectral selective requirements and the basic principle of selective absorption in carbide ceramics are introduced. Then, preparation method, performance of the carbide solar selective absorption coatings and their influence factors were summarized. Finally, we prospect the carbide development prospects of ultra-high temperature ceramic selective absorbing coatings.
Key words:  solar energy    carbide    ultra-high temperature ceramics    selective absorbing coatings
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TB34  
通讯作者:  anlq@shmtu.edu.cn   
作者简介:  王龙飞,2018年6月毕业于鲁东大学,获得工学学士学位。现为上海海事大学海洋科学与工程学院研究生,在安丽琼老师的指导下进行研究。目前主要研究领域为太阳能选择性吸收涂层。
安丽琼,上海海事大学海洋科学与工程学院副教授。2001年7月本科毕业于华中师范大学物理系,2003年硕士毕业于华东师范大学光学专业,2012年3月在日本东北大学金属材料研究所材料系统工程专业获得工学博士学位。2012-2014年在丹麦奥尔堡大学进行博士后研究。主要从事太阳能选择吸收涂层、光学陶瓷研究。
引用本文:    
王龙飞, 安丽琼, 孙凯, 范润华. 碳化物超高温陶瓷太阳能选择性吸收涂层的研究进展[J]. 材料导报, 2021, 35(23): 23033-23039.
WANG Longfei, AN Liqiong, SUN Kai, FAN Runhua. Research Progress on Ultra-high Temperature Carbide Ceramics Selective Absorbing Coatings for Solar Energy. Materials Reports, 2021, 35(23): 23033-23039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070190  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23033
1 Izquierdo S, Montanes C, Dopazo C, et al. Energy Policy, 2010, 38, 6215.
2 Xu K, Du M, Hao L, et al. Journal of Materiomics, 2020, 6, 167.
3 Coulibaly M, Arrachart G, Mesbah A, et al. Solar Energy Materials & Solar Cells, 2015, 143, 473.
4 Sani E, Mercatelli L, Fontani D, et al. Journal of Renewable & Sustai-nable Energy, 2011, 3, 063107.
5 Sani E, Mercatelli L, Francini F, et al. Scripta Materialia, 2011, 65, 775.
6 Sani E, Mercatelli L, Sansoni P, et al. Journal of Renewable & Sustai-nable Energy, 2012, 4, 033104.
7 Sani E, Mercatelli L, Meucci M, et al. Solar Energy, 2016, 131, 199.
8 Jiang X M. China's strategic emerging industry-new materials (solar energy new materials), China Railway Press, China, 2017 (in Chinese).
姜希猛. 中国战略性新兴产业——新材料(太阳能新材料), 中国铁道出版社, 2017.
9 Sigrist M, Ghassing G, François J C, et al. Journal de Physique, 1981, 42, 453.
10 Delin A, Eriksson O, Ahuja R, et al. Physical Review B, 1996, 54, 1673.
11 Usmani B, Dixit A. Solar Energy, 2016, 134, 353.
12 Gao X H, Guo Z M, Geng Q F, et al. Solar Energy Materials & Solar Cells, 2016, 157, 543.
13 Gao X H, Guo Z M, Geng Q F, et al. Solar Energy, 2016, 140, 199.
14 Gao X H, Guo H X, Zhou T H, et al. Solar Energy Materials and Solar Cells, 2018, 176, 93.
15 Gao X H, Qiu X L, Shen Y Q, et al. Solar Energy Materials and Solar Cells, 2019, 203, 110187.
16 Gao X H, Wang C B, Guo Z M, et al. Optical Materials, 2016, 58, 219.
17 Gao X H, Guo Z M, Geng Q F, et al. Royal Society of Chemistry, 2016, 6(68), 63867.
18 Gao X H, Guo Z M, Geng Q F, et al. Solar Energy Materials & Solar Cells, 2017, 164, 63.
19 Li C J, Yang G J.Int. Journal of Refractory Metals and Hard Materials, 2013, 39, 2.
20 Bernhard W, Andreas W, Hanna P, et al. Surface & Coatings Technology, 2006, 201, 2032.
21 Ma N, Guo L, Cheng Z X, et al. Applied Surface Science, 2014, 320, 364.
22 Kim T K, Bryan Saders V, Caldwell E,et al. Solar Energy, 2016, 132, 257.
23 Jafari M, Enayati M H, Salehi M,et al. Materials Science & Engineering A, 2013, 578, 46.
24 Wang X B, Ouyang T Y, Duan X H, et al. Metals, 2017, 7, 137.
25 Zhang X M, Wang X B, Zhang X, et al. Vacuum, 2018, 155, 185.
26 Duan X H, Zhang X M, Ke C Z, et al. Vacuum , 2017, 145, 209.
27 Aréna H, Coulibaly M, Soum-Glaude A, et al. Solar Energy Materials and Solar Cells, 2019, 191, 199.
28 Pang X M, Shen Y, Wei J Y, et al. Applied Physics A, 2019, 125, 677.
29 Pang X M, Zhou F L.Optics and Lasers in Engineering, 2020, 127, 105983.
30 Fan X M, Zhang C, Jiang D Y. Engineering ceramics and their applications, China Machine Press, China, 2006 (in Chinese).
樊新民, 张骋, 蒋丹宇. 工程陶瓷及其应用, 机械工业出版社, 2006.
31 Gao X H, Theiss W, Shen Y Q, et al. Solar Energy Materials and Solar Cells, 2017, 167, 150.
32 El-Eskandarany M S. Journal of Alloys and Compounds, 2005, 391, 228.
33 Sciti D, Trucchi D M, Bellucci A, et al. Solar Energy Materials & Solar Cells, 2017, 16, 1.
34 Kondaiah P, Niranjan K, John S J, et al. Solar Energy Materials and Solar Cells, 2019, 198, 26.
35 He L F, Bao Y W, Li M S, et al. Journal of Material Research, 2008, 23, 3339.
36 He L F, Bao Y W, Li M S, et al. Journal of the American Ceramic Society, 2009, 92, 445.
37 Barsoum M W. Progress in Solid State Chemistry, 2000, 28, 201.
38 Fang Z G, Lu C H, Guo C P, et al. Solar Energy Materials & Solar Cells, 2015, 134,252.
39 Jyothi J, Chaliyawala H, Srinivas G, et al. Solar Energy Materials & Solar Cells, 2015, 140, 209.
40 Jyothi J, Soum-Glaude A, Nagaraja H S, et al. Solar Energy Materials and Solar Cells, 2017, 171, 123.
41 Shao H, Zeng X, Li Q Y, et al. Surface Technology, 2020, 49(6), 138.
邵豪, 曾鲜, 李擎煜, 等.表面技术, 2020, 49(6), 138.
42 Su F G, Liang J Q, Liang Z Z, et al. Acta Phys, 2011, 60, 057802.
苏法刚, 梁静秋, 梁中翥, 等. 物理学报, 2011, 60, 057802.
43 Cao N N, Lu S T, Yao R, et al. Progress in Chemistry, 2019, 31(4), 597.
曹宁宁, 卢松涛, 姚锐, 等. 化学进展, 2019, 31(4), 597.
44 Khodasevych I E, Wang L, Mitchell A, et al. Advanced Optical Mate-rials, 2015, 3, 852.
45 Usmani B, Dixit A. Solar Energy Materials & Solar Cells, 2016, 157, 733.
[1] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[2] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[3] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[4] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[5] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[6] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[7] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[8] 苏丽芬, 常展鹏, 宁玉盈, 汪路, 方雅涵, 方炳虎, 柯玉超, 杨斌, 夏茹, 钱家盛, 苗蕾. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
[9] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[10] 宋扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
[11] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[12] 栾福园, 杨松旺, 吴子华, 谢华清. 钙钛矿太阳能电池的环境友好化研究进展[J]. 材料导报, 2020, 34(Z2): 11-16.
[13] 刘侠妤. 卤化铅钙钛矿量子点太阳能电池的进展与展望[J]. 材料导报, 2020, 34(Z2): 17-18.
[14] 赵琦, 沈晓明, 符跃春, 何欢. 光子增强热电子发射(PETE)太阳能电池的研究进展[J]. 材料导报, 2020, 34(Z1): 1-6.
[15] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed