Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10152-10157    https://doi.org/10.11896/cldb.20040155
  金属与金属基复合材料 |
两种热冲压模具用钢的抗拉毛性能
孙强1,2, 黄苏起1,2, 蔡著文1,2, 党卫东1,2, 吴晓春1,2
1 上海大学材料科学与工程学院,上海 200444
2 省部共建高品质特殊钢冶金与制备国家重点实验室,上海 200444
Anti-galling Performance of Two Hot Stamping Mould Steels
SUN Qiang1,2, HUANG Suqi1,2, CAI Zhuwen1,2, DANG Weidong1,2, WU Xiaochun1,2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 State Key Laboratory of Advanced Special Steel, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 4120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 诸多汽车零部件制造商通过表面处理缓解零部件的热冲压拉毛问题,但该处理将提高生产成本。为此,本研究从模具材料合金化配比出发,通过实验和理论研究,初步判断热冲压模具抗拉毛性能与模具材料抵抗塑性变形的能力有关,为验证该猜想,采用透射电子显微镜(TEM)、X射线衍射仪、应力仪、显微维氏硬度计等手段分析了两种模具材料(SDCM钢和SDHS2钢)回火态的碳化物类型、碳化物分布、位错密度、喷丸后的截面残余应力梯度和显微硬度梯度。结果表明:与SDHS2钢相比,抗拉毛性能较优的SDCM钢的屈服强度较高,其在相同的外加应力下,具备更强的塑性变形抗力,变形软化层较浅。此外,热处理后SDCM钢和SDHS2钢中均以钒系碳化物为主,其中高碳高钒低铬的SDCM钢中碳化物的体积分数和位错密度较大,使其具有较高的析出强化和位错强化效果,提高了材料的屈服强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙强
黄苏起
蔡著文
党卫东
吴晓春
关键词:  热冲压模具钢  拉毛  塑性变形抗力  位错密度  碳化物    
Abstract: Hot stamping is a metal-forming process for stamping and forming high-strength steel plates, which can not only greatly improve the forming performance of the material, but also refine the grain size through high-temperature phase transformation. However, during the hot stamping process, the high-strength steel sheet has been heated above the austenitizing temperature. At this time, the yield strength of the high-strength steel sheet is low, and the high-strength steel sheet can easily be scratched by the debris knob. The mechanical properties of high strength steel plates were reduced significantly. In this respect, many auto parts manufacturers have relieved the hot-stamping galling problem of parts by surface treatment, but this treatment will increase production costs. For this reason, this study starts from the alloying ratio of the mould materials, and through experimental and theoretical research, it is preliminarily judged that the anti-galling performance of hot stamping moulds is related to the ability of plastic deformation resistance of the mould materials. In order to verify the conjecture, the transmission electron microscope (TEM), X-ray diffractometer, residual stress meter, micro Vickers hardness tester were used to observe the carbide types, carbide distribution, dislocation density in the two tempered materials (SDCM steel and SDHS2 steel), and residual stress gradient and micro Vickers hardness gra-dient of the section after shot peening. The results show that compared with SDHS2 steel, the yield strength of SDCM steel with better anti-galling performance is higher, which makes it have stronger resistance to plastic deformation under the same applied stress, making its deformation softening layer shallower. In addition, vanadium-based carbides are predominant in both SDCM steel and SDHS2 steel after heat treatment. Among them, SDCM steel with higher carbon content, higher vanadium content and lower chromium content contains higher carbide volume fraction and dislocation density, which results in higher precipitation strengthening and dislocation strengthening effect, increasing the yield strength of the material. Therefore, under the same applied stress, SDCM steel has excellent plastic deformation resistance.
Key words:  hot stamping mould steel    galling    plastic deformation resistance    dislocation density    carbide
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TG76  
  TG704  
基金资助: 国家重点研发计划(2016YFB0300400;2016YFB0300402)
通讯作者:  wuxiaochun@t.shu.edu.cn   
作者简介:  孙强,上海大学硕士研究生,2017年9月至2020年6月在上海大学获得材料加工工程专业工学硕士学位。以第一作者在国内外学术期刊上发表论文1篇,研究工作主要围绕先进热冲压模具材料开发及其抗拉毛性能。
吴晓春,上海大学教授,博士研究生导师。近年来完成模具相关科研项目110余项(科研经费达8 300多万元),发表论文350余篇,获发明专利授权20项,获省部级科技进步二等奖3项。是我国“十一五”国家科技支撑计划课题“高品质模具钢锻材关键技术开发”、 “十三五”国家重点研发计划项目“高性能工模具钢及应用”项目的首席专家。
引用本文:    
孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
SUN Qiang, HUANG Suqi, CAI Zhuwen, DANG Weidong, WU Xiaochun2,. Anti-galling Performance of Two Hot Stamping Mould Steels. Materials Reports, 2021, 35(10): 10152-10157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040155  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10152
1 Hou Y K, Li Y P, Yu Z Q, et al. Key Engineering Materials, 2012, 501, 94.
2 Zhao R G T. Experimental study of influence of tool surface parameter on galling defect. Master's Thesis, Shanghai Jiao Tong University, China, 2008 (in Chinese).
照日格图. 模具表面参数对冲压件拉毛缺陷影响的实验研究. 硕士学位论文, 上海交通大学, 2008.
3 Jiang B, Wu X C. Die & Mould Industry, 2019, 45(12), 1 (in Chinese).
蒋斌,吴晓春. 模具工业, 2019, 45(12), 1.
4 Hou Y, Yu Z, Li S.Journal of Shanghai Jiaotong University (Science), 2010, 15, 245.
5 Chen X P, Hou Y K, Jiang H M, et al.Forging and Stamping Technology, 2008, 33(2), 31 (in Chinese).
陈新平,侯英岢,蒋浩民,等. 锻压技术, 2008, 33(2), 31.
6 Imbeni V, Martini C, Lanzoni E, et al. Wear, 2001, 250(2), 997.
7 Sato T, Besshi T, Tsutsui I, et al. Journal of Materials Processing Technology, 2000, 104, 21.
8 Wang M, Zhang C, Zhang Y, et al. China Mechanical Engineering, 2016, 27(3), 391 (in Chinese).
王敏,张春,张宇,等. 中国机械工程, 2016, 27(3), 391.
9 Wu B B, Lin J P, Ma Z J, et al. Forging and Stamping Technology, 2018, 43(1), 110 (in Chinese).
吴斌斌,林建平,马治军,等. 锻压技术, 2018, 43(1), 110.
10 Li S. The study on microstructure and high temperature friction and wear mechanism of new type hot stamping die steel. Ph.D. Thesis, Shanghai University, China, 2017 (in Chinese).
李爽. 新型热冲压模具钢组织与高温摩擦磨损机理研究. 博士学位论文, 上海大学, 2017.
11 Polonsky I A, Keer L M. Journal of the Mechanics and Physics of Solids, 1995,43(4), 637.
12 Swahn H, Becker P C, Vingsbo O. Metal Science, 1976,10(1), 35.
13 Wert C A. Journal of Metals, 1950,2(10), 1242.
14 Fu H, Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Acta Materialia, 2017,128, 176.
15 Shi Y J, Yu L H, Yu Z P, et al. Chinese Journal of Materials Research, 2020, 34(2), 125 (in Chinese)
施渊吉, 于林惠, 于照鹏, 等. 材料研究学报, 2020, 34(2), 125.
16 Wang X J, Xu M G, Chen Q L, et al.Shanghai Metals, 1998, 20(2),8 (in Chinese).
王小军, 徐明纲, 陈秋龙, 等. 上海金属, 1998, 20(2),8.
17 Chen Y W, Wu X C.Materials for Mechanical Engineering, 2010, 34(2), 27 (in Chinese).
陈英伟, 吴晓春. 机械工程材料, 2010, 34(2), 27.
18 Yan W Z, Liu J, Wen S F, et al. Journal of Vibration and Shock, 2011, 30(6), 139 (in Chinese).
闫五柱,刘军,温世峰,等. 振动与冲击, 2011, 30(6),139.
19 Huang T, Zhang T H. Science Technology and Engineering, 2010, 10(21), 5145 (in Chinese).
黄韬,张铁虎. 科学技术与工程, 2010, 10(21), 5145.
20 Yong Q L. Secondary phase in steels, Metallurgical Industry Press, China,2006 (in Chinese).
雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006.
21 Mao W W, Ning A, Guo H. International Journal of Minerals, Metallurgy, and Materials, 2016, 9, 1056.
22 Martin R, Mari D, Schaller R. Materials Science and Engineering: A, 2009, 521-522, 117.
23 Wu J Z, Yang W S, Guo H J, et al. Nonferrous Metals Science and Engineering, 2017, 8(4), 19 (in Chinese).
吴建中,杨文晟,郭汉杰,等. 有色金属科学与工程, 2017, 8(4), 19.
24 Funakawa Y, Shiozaki T, Tomita K, et al. ISIJ International, 2004, 44, 1945.
25 Nin A G, Mao W W, Guo H J, et al. The Chinese Journal of Process Engineering, 2014, 14(6), 1041 (in Chinese).
宁安刚,毛文文,郭汉杰,等. 过程工程学报, 2014, 14(6), 1041.
26 Liu Y M. Journal of Iron and Steel Research, 2007, 19(4), 1 (in Chinese).
刘禹门. 钢铁研究学报, 2007, 19(4), 1.
[1] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[2] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[3] 马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
[4] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[5] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[6] 谭騛, 宁兆祥, 许晓嫦, 任鹏禾, 陈广兴. 新型渣浆泵用材料的腐蚀性能研究[J]. 材料导报, 2019, 33(24): 4157-4163.
[7] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. 强碳化物形成元素与碳的配比关系和稳定化处理对310S奥氏体不锈钢析出相行为的影响[J]. 材料导报, 2019, 33(18): 3101-3106.
[8] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[9] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[10] 禹润缜, 刘胜新, 王朋旭, 黄智泉, 魏建军. Fe-Cr-C系硬面合金及其硬质相的研究进展[J]. 材料导报, 2018, 32(21): 3780-3788.
[11] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[12] 王俊, 司乃潮, 王正军, 刘光磊, 司松海. 锻造热处理工艺对Al-7Si-1.6Cu合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 70-74.
[13] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[14] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed