Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 70-74    https://doi.org/10.11896/j.issn.1005-023X.2017.04.016
  材料研究 |
锻造热处理工艺对Al-7Si-1.6Cu合金组织和力学性能的影响*
王俊1, 司乃潮1, 王正军1, 刘光磊1, 司松海2
1 江苏大学材料科学与工程学院, 镇江 212013;
2 镇江忆诺唯记忆合金有限公司, 镇江 212013
Effects of Forging and Heat Treatment Processing on Structure and Mechanical
Properties of Al-7Si-1.6Cu Alloy
WANG Jun1, SI Naichao1, WANG Zhengjun1, LIU Guanglei1, SI Songhai2
1 School of Material Science and Engineering,Jiangsu University, Zhenjiang 212013;
2 Zhenjiang Yinuowei Memory Alloy Co., LTD, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 1916KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过力学性能测试以及OM、SEM和TEM的组织观察,研究了锻造热处理工艺对Al-7Si-1.6Cu合金组织与力学性能的影响。结果表明,合金经过均匀化(500 ℃,8 h)、锻造(锻造温度380~450 ℃,应变速率60~90 s-1,道次压缩比10%~20%)、热处理(固溶480 ℃,2 h,70 ℃,水冷;时效180 ℃,6 h)之后,较铸态相比硬度提高18%、抗拉强度提高了52%、延伸率提高了54.5%。多向锻造过程中共晶Si相发生碎断与球化,时效过程中析出的纳米级第二相对合金起强化作用。开创性地从位错密度方向解释锻造过程强度提高的原因,通过Zener-Hollomon参数来说明锻造过程中流变应力与变形速率和变形温度之间的关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王俊
司乃潮
王正军
刘光磊
司松海
关键词:  锻造热处理  显微组织  力学性能  Zener-Hollomon参数  位错密度    
Abstract: Effects of forging and heat treatment on microstructure and mechanical properties of Al-7Si-1.6Cu alloy were investigated by means of mechanics performance test, OM, SEM and TEM observations. Results showed that by homogenization proces-sing(500 ℃,8 h), forging(forging temperature from 380 ℃ to 450 ℃, strain rate 60-90 s-1, pass compression ratio 10%-20%) and heat treatment(solid solution at 480 ℃ for 2 h,70 ℃ water-quenching,aging at 180 ℃ for 6 h), the hardness,tensile strength and elongation of the alloy increased by 18%,52% and 54.5% compared with the as-cast. Multidirectional forging process accelerated the breaking and spheroidizing of the eutectic Si particles. The precipitation of nanoscale second phase in the aging process had strengthening effect to the alloy. From the point of the dislocation density, the article explained the reasons for strength improvement by for-ging process.Zener-Hollomon parameters were adopted to illustrate the relationship of the forging process flow stress between defor-mation temperature and deformation rate.
Key words:  forging heat treatment    microstructure    mechanical properties    Zener-Hollomon parameter    dislocation density
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG146.2  
基金资助: *江苏科技型企业技术创新资金(BC2012211);江苏大学高校人才科研启动基金(14JDG126)
通讯作者:  司乃潮:通讯作者,男,1955年生,教授,博士研究生导师,主要从事金属功能材料和高性能合金材料的研究与制备 E-mail:18252585181@163.com   
作者简介:  王俊:男,1991年生,硕士研究生,主要从事高性能铝合金的研究和制备 E-mail:1194424398@qq.com
引用本文:    
王俊, 司乃潮, 王正军, 刘光磊, 司松海. 锻造热处理工艺对Al-7Si-1.6Cu合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 70-74.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.016  或          http://www.mater-rep.com/CN/Y2017/V31/I4/70
1 Wu Y, Zhang J, Liao H, et al. Development of high performance near eutectic Al-Si-Mg alloy profile by micro alloying with Ti[J]. J Alloys Compd,2016,660:141.
2 Ma Guiyan. Investigation on hot deformation mechanisms and spinning forming process of A356 casting alloy [D]. Shenyang: Shen-yang University,2013(in Chinese).
马桂艳. A356铝合金热变形机理和旋压工艺研究[D].沈阳:沈阳大学,2013.
3 Cheng Xianjun. Defect analysis of Squeeze casting Al-Si piston [J].Special Casting Nonferrous Alloys,2004(4):47(in Chinese).
程先军.挤压铸造A-l Si活塞缺陷分析[J].特种铸造及有色合金,2004(4):47.
4 Wang Jiefang, Xie Jingpei, Liu Zhongxia, et al.Review on the research and application of A-l Si piston alloy at home and abroad[J].Foundry,2005,54(1):24(in Chinese).
王杰芳,谢敬佩,刘忠侠,等.国内外铝硅活塞合金的研究及应用评述[J].铸造,2005,54(1):24.
5 Xia Lanting, Zhu Hongxi, Li Xiaoqin,et al. The application and development of Al-Si piston alloy [J].Mech Eng Autom,2001(13):9(in Chinese).
夏兰廷,朱宏喜,李晓琴,等.铝-硅活塞合金的应用与发展[J].机械工程与自动化,2001(13):9.
6 Zafar S, Ikram N, Shaikh M A, et al. Microstructure studies in Al-6% Si-1.9% Cu-x% Mg alloys[J]. J Mater Sci,1990,25(5):2595.
7 Che Xin, Xu Zhijun, Chen Lijia, et al. Low-cycle fatigue behavior of cast Al-Si-Cu-Mg(-Er) aluminum alloy[J].Foundry,2011,60(1):20(in Chinese).
车欣, 徐志军, 陈立佳, 等. Al-Si-Cu-Mg (-Er) 铸造铝合金的低周疲劳行为[J].铸造,2011,60(1):20.
8 Lin Gaoyong, Zhang Hui, Guo Wuchao, et al. Flow stress of 7075 aluminum alloy during hot compression deformation [J].Chin J Nonferr Met,2001,11(3):412(in Chinese).
林高用, 张辉, 郭武超, 等. 7075 铝合金热压缩变形流变应力[J]. 中国有色金属学报,2001,11(3):412.
9 Tao Xingang, Xu Chunguo, Liu Guihua. The determination of Zener-Hollomon parameter in ductile damage criteria [J]. J Plast Eng,2011,18(1):76(in Chinese).
陶新刚, 徐春国, 刘桂华. 楔横轧韧性损伤模型中 Zener-Hollomon 参数的确定[J]. 塑性工程学报,2011,18(1):76.
10 Miao W F, Laughlin D E. Precipitation hardening in aluminum alloy 6022[J]. Scr Mater,1999,40(7):873.
11 Ravi C, Wolverton C. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates [J]. Acta Mater,2004,52(14):4213.
12 Ran G, Zhou J E, Wang Q G. Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy [J]. J Mater Processing Technol,2008,207(1):46.
13 Lin Gaoyong, Lei Yuxia, Guo Daoqiang, et al. Heat treatment strengthening and microstructure characteristics of wrought Al-Si-Cu-Mg alloy [J].Chin J Nonferrous Metals,2014,24(3):584(in Chinese).
林高用, 雷玉霞, 郭道强, 等. 变形 Al-Si-Cu-Mg 合金热处理强化及其组织特征[J]. 中国有色金属学报,2014,24(3):584.
14 Wilkinson D S, Caceres C H. On the mechanism of strain-enhanced grain growth during superplastic deformation [J]. Acta Metall,1984,32(9):1335.
15 Hono K, Ohnuma M, Murayama M, et al. Cementite decomposition in heavily drawn pearlite steel wire [J]. Scr Mater,2001,44(6):977.
16 Williamson G K, Smallman R E. Ⅲ. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum [J]. Philos Mag,1956,1(1):34.
17 Minami T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semiconductor Sci Technol,2005,20(4):S35.
18 Guo Ning. A study on microstructural characterization and mechanical properties of cold drawing pearlitic steel wires for bridge cable[D].Chongqing :Chongqing University,2012(in Chinese).
郭宁. 桥梁缆索用冷拔珠光体钢丝微观组织表征及力学性能研究[D]. 重庆:重庆大学,2012.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed