Abstract: The carbide-free bainite/martensite (CFB) multiphase high strength steels have excellent combination of strength and toughness which is superior to the martensite steels. Hence, these CFB/M multiphase steels have been used in the fields of railway, transport, machine, build, etc. The paper reviews recent works on the alloying design, heat treatment, microstructure characterization, mechanism of strengthening, toughening and ductility, delayed fracture properties, fatigue properties, of the low-cost Mn-Si-Cr series CFB/M multiphase steels. In particular, the novel CFB/M multiphase steels treated by BQ&P treatment are introduced. The results show that the BQ&P treated CFB/M multiphase steels exhibits more excellent combination of strength, ductility, toughness and fatigue properties. The paper also presents the applications of the Mn-Si-Cr series CFB/M multiphase steels, especially in the field of the heavy-haul and high-speed railway.
1 Hehemann R F, Luhan V J, Troiano A R. The influence of bainite on mechanical properties[J]. Trans ASM, 1957,49:409. 2 Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 Pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite[J]. Metall Trans, 1983,14A:485. 3 Tomita Y, Okabayashi K. Mechanical properties of 0.40 Pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metall Trans, 1985,16A:73. 4 Tomita Y, Okawa T. Effect of modified heat treatment on mechanical properties of 300m steel[J]. Mater Sci Technol, 1995,11:245. 5 Liu D Y, Fang H S, Chen Y T, et al. Alloy design of 1500MPa grade economical bainite/martensite duplex phase steel[J]. Metal Heat treatment, 2000(10):1(in Chinese). 刘东雨,方鸿生,陈颜堂,等. 1500MPa级经济型贝氏体/马氏体复相钢的合金设计[J]. 金属热处理,2000(10):1. 6 Fang H S, Liu D Y, Chang K D, et al. Microstructure and properties of 1500MPa economical bainite/martensite duplex phase steel[J]. J Iron Steel Res, 2001,13(3):31(in Chinese). 方鸿生,刘东雨,常开地,等. 1500MPa级经济型贝氏体/马氏体复相钢的组织与性能[J]. 钢铁研究学报,2001,13(3):31. 7 Liu D Y. Study on 1500MPa grade low carbon carbide free bainite/martensite steel [D]. Beijing:Tsinghua University, 2002(in Chinese). 刘东雨. 1500MPa级低碳无碳化物贝氏体/马氏体复相钢的研究[D]. 北京:清华大学,2002. 8 Liu D, Bai B, Fang H, et al. Effect of tempering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel[J]. Mater Sci Eng, 2004,371:40. 9 Gao G, Zhang H, Tan Z, et al. A carbide-free bainite martensite austenite triplex steel with enhanced mechanical properties treated by a novel quenching- partitioning-tempering process[J]. Mater Sci Eng, 2013,559:165. 10Gao G, Zhang H, Gui X, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel:The great potential of ultrafine filmy retained austenite[J]. Acta Mater, 2014,76:425. 11Gao G, Zhang H, Gui X, et al. Tempering behavior of ductile 1700 MPa Mn-Si-Cr-C steel treated by quenching and partitioning process incorporating bainite formation[J]. J Mater Sci Technol, 2015,31(2): 199. 12Guo H, Gao G, Gui X, et al. Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation[J]. Mater Sci Eng, 2016,667:224. 13万翛如,许昌淦. 高强度及超高强度钢[M]. 北京:机械工业出版社,1988. 14冶金工业部.合金钢钢种手册[M]. 北京:冶金工业出版社,1983. 15Yu Y. Study on very high cycle fatigue behaviors and mechanism of Mn-Si-Cr series bainite/martensite duplex-phase high strength steels [D]. Beijing:Tsinghua University, 2010(in Chinese). 于洋. Mn-Si-Cr系贝/马复相高强钢超高周疲劳行为及机理研究[D]. 北京:清华大学,2010. 16Wei D Y, Gu J L, Fang H S,et al. Fatigue behavior on a 1500MPa grade bainite/martensite duplex-phase high strength steel[J]. Acta Metall Sin, 2003,39(7):734. 韦东远, 顾家琳, 方鸿生. 1500 MPa 级贝氏体/马氏体复相高强度钢的疲劳断裂特性[J]. 金属学报, 2003,39(7):734. 17Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use[J]. J Solid Mech Mater Eng, 2009,3(3):425. 18Yu Y, Gu J, Shou F, et al. Competition mechanism between microstructure type and inclusion level in determining VHCF behavior of bainite/martensite dual steels[J]. Int J Fatigue, 2011,33:500. 19Yu Y, Gu J, Xu L, et al. Very high cycle fatigue behaviors of Mn-Si-Cr series bainite/ martensite dual phase steels[J]. Mater Des, 2010,31:3067. 20Zhao P, Gao G, Misra R, et al. Effect of microstructure on the very high cycle fatigue behavior of a bainite/martensite multiphase steel[J]. Mater Sci Eng A, 2015,630:1. 21Zhao P, Cheng C, Gao G, et al. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels[J]. Mater Sci Eng A, 2016,650:438. 22Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment[J]. Mater Sci Eng A, 2006,438:25. 23Speer J G, De Moor E, Findley K O, et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel[J]. Metall Mater Trans A, 2011,42(12):3591. 24Gao G, Zhang H, Gui X, et al. Enhanced strain hardening capacity in a lean alloy steel treated by a “disturbed” bainitic austempering process[J]. Acta Mater, 2015,101:31. 25Gui X, Gao G, Guo H, et al. Effect of bainitic transformation du-ring BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel[J]. Mater Sci Eng A, 2017,684:598. 26Gao G, Zhang B, Cheng C, et al. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process[J]. Int J Fatigue, 2016,92:203. 27Zhao P, Zhang B, Cheng C, et al. The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength MN-SI-Cr-C steel[J]. Mater Sci Eng A, 2015,645:116. 28Gui X L, Zhang B X, Gao G H, et al. Fatigue behavior of bainite/martensite multiphase high strength steel treated by quenching-partitioning-tempering process[J]. Acta Metall Sin, 2016,52(9):1036. 桂晓露, 张宝祥, 高古辉, 等. QPT 处理贝氏体/马氏体复相高强钢疲劳断裂特性研究[J]. 金属学报, 2016,52(9):1036. 29Olivares R O, Garcia C I, DeArdo A, et al. Advanced metallurgical alloy design and thermomechanical processing for rails steels for North American heavy haul use[J]. Wear, 2011,271(1):364. 30Wang W J, Guo H M, Du X, et al. Investigation on the damage mechanism and prevention of heavy-haul railway rail[J]. Eng Fai-lure Anal, 2013,35:206. 31Kimura T, Takemasa M, Honjo M. Development of SP3 rail with high wear resistance and rolling contact fatigue resistance for heavy haul railways[J]. JFE GIHO, 2010,26:11. 32Kern A, Schmedders H, Zimmermann A. The development of bainitic steels for special railway system requirements[C]∥39th Mechanical Working and Steel Processing Conference Proceedings. In-dianapolis, Indiana, 1997:1015. 33Jones J A, Perlman A B, Orringer O. Tailoring heat treatment and composition for production of on-line head-hardened bainitic rail[C]∥ Iron and Steel Society/AIME, 39th Mechanical Working and Steel Processing Conference Proceedings. Indianapolis, Indiana, 1997. 34Wang K, Tan Z, Gao G, et al. Ultrahigh strength-toughness combination in Bainitic rail steel:The determining role of austenite stability during tempering[J]. Mater Sci Eng A, 2016,662:162. 35Gui X, Wang K, Gao G, et al. Rolling contact fatigue of bainitic rail steels:The significance of microstructure[J]. Mater Sci Eng A, 2016,657:82.