Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 74-81    https://doi.org/10.11896/j.issn.1005-023X.2017.021.011
  材料综述 |
Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*
高古辉, 桂晓露, 谭谆礼, 白秉哲
北京交通大学机械与电子控制工程学院材料中心,北京 100044
Carbide-free Bainite/Martensite Multiphase High Strength Steels:a Review
GAO Guhui, GUI Xiaolu, TAN Zhunli, BAI Bingzhe
Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044
下载:  全 文 ( PDF ) ( 3684KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无碳化物贝氏体/马氏体复相高强钢具有比同等强度马氏体钢更优异的韧性和塑性,被广泛应用到轨道交通、机械、建筑等领域。文章概述了低成本Mn-Si-Cr系无碳化物贝氏体/马氏体复相钢近年来在合金化设计、工艺设计、微观组织、强韧化机理、强塑化机理、延迟断裂及疲劳性能等方面取得的研究成果。特别介绍了近年来笔者在BQ&P工艺处理CFB/M复相钢方面的工作进展,经过BQ&P处理之后,CFB/M复相钢显示了更优异的强度、塑性、韧性和疲劳性能的匹配。最后简单介绍了Mn-Si-Cr系无碳化物贝氏体/马氏体复相钢在不同领域的应用情况,特别是其在重载高速铁路领域的应用现状和前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高古辉
桂晓露
谭谆礼
白秉哲
关键词:  高强钢  无碳化物贝氏体/马氏体复相组织  强韧性  疲劳性能  BQ&P工艺    
Abstract: The carbide-free bainite/martensite (CFB) multiphase high strength steels have excellent combination of strength and toughness which is superior to the martensite steels. Hence, these CFB/M multiphase steels have been used in the fields of railway, transport, machine, build, etc. The paper reviews recent works on the alloying design, heat treatment, microstructure characterization, mechanism of strengthening, toughening and ductility, delayed fracture properties, fatigue properties, of the low-cost Mn-Si-Cr series CFB/M multiphase steels. In particular, the novel CFB/M multiphase steels treated by BQ&P treatment are introduced. The results show that the BQ&P treated CFB/M multiphase steels exhibits more excellent combination of strength, ductility, toughness and fatigue properties. The paper also presents the applications of the Mn-Si-Cr series CFB/M multiphase steels, especially in the field of the heavy-haul and high-speed railway.
Key words:  high strength steel    carbide-free bainite/martensite multiphase microstructure    strength and toughness    fatigue property    BQ&P process
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TG142.24  
基金资助: 国家自然科学基金面上项目(51271013;51301012);北京市自然科学基金面上项目(2172047)
作者简介:  高古辉:男,1987年生,博士,副研究员,主要从事贝氏体相变与贝氏体钢应用Tel:010-51685495 E-mail:gaogh@bjtu.edu.cn
引用本文:    
高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
GAO Guhui, GUI Xiaolu, TAN Zhunli, BAI Bingzhe. Carbide-free Bainite/Martensite Multiphase High Strength Steels:a Review. Materials Reports, 2017, 31(21): 74-81.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.011  或          https://www.mater-rep.com/CN/Y2017/V31/I21/74
1 Hehemann R F, Luhan V J, Troiano A R. The influence of bainite on mechanical properties[J]. Trans ASM, 1957,49:409.
2 Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 Pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite[J]. Metall Trans, 1983,14A:485.
3 Tomita Y, Okabayashi K. Mechanical properties of 0.40 Pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metall Trans, 1985,16A:73.
4 Tomita Y, Okawa T. Effect of modified heat treatment on mechanical properties of 300m steel[J]. Mater Sci Technol, 1995,11:245.
5 Liu D Y, Fang H S, Chen Y T, et al. Alloy design of 1500MPa grade economical bainite/martensite duplex phase steel[J]. Metal Heat treatment, 2000(10):1(in Chinese).
刘东雨,方鸿生,陈颜堂,等. 1500MPa级经济型贝氏体/马氏体复相钢的合金设计[J]. 金属热处理,2000(10):1.
6 Fang H S, Liu D Y, Chang K D, et al. Microstructure and properties of 1500MPa economical bainite/martensite duplex phase steel[J]. J Iron Steel Res, 2001,13(3):31(in Chinese).
方鸿生,刘东雨,常开地,等. 1500MPa级经济型贝氏体/马氏体复相钢的组织与性能[J]. 钢铁研究学报,2001,13(3):31.
7 Liu D Y. Study on 1500MPa grade low carbon carbide free bainite/martensite steel [D]. Beijing:Tsinghua University, 2002(in Chinese).
刘东雨. 1500MPa级低碳无碳化物贝氏体/马氏体复相钢的研究[D]. 北京:清华大学,2002.
8 Liu D, Bai B, Fang H, et al. Effect of tempering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel[J]. Mater Sci Eng, 2004,371:40.
9 Gao G, Zhang H, Tan Z, et al. A carbide-free bainite martensite austenite triplex steel with enhanced mechanical properties treated by a novel quenching- partitioning-tempering process[J]. Mater Sci Eng, 2013,559:165.
10Gao G, Zhang H, Gui X, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel:The great potential of ultrafine filmy retained austenite[J]. Acta Mater, 2014,76:425.
11Gao G, Zhang H, Gui X, et al. Tempering behavior of ductile 1700 MPa Mn-Si-Cr-C steel treated by quenching and partitioning process incorporating bainite formation[J]. J Mater Sci Technol, 2015,31(2): 199.
12Guo H, Gao G, Gui X, et al. Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation[J]. Mater Sci Eng, 2016,667:224.
13万翛如,许昌淦. 高强度及超高强度钢[M]. 北京:机械工业出版社,1988.
14冶金工业部.合金钢钢种手册[M]. 北京:冶金工业出版社,1983.
15Yu Y. Study on very high cycle fatigue behaviors and mechanism of Mn-Si-Cr series bainite/martensite duplex-phase high strength steels [D]. Beijing:Tsinghua University, 2010(in Chinese).
于洋. Mn-Si-Cr系贝/马复相高强钢超高周疲劳行为及机理研究[D]. 北京:清华大学,2010.
16Wei D Y, Gu J L, Fang H S,et al. Fatigue behavior on a 1500MPa grade bainite/martensite duplex-phase high strength steel[J]. Acta Metall Sin, 2003,39(7):734.
韦东远, 顾家琳, 方鸿生. 1500 MPa 级贝氏体/马氏体复相高强度钢的疲劳断裂特性[J]. 金属学报, 2003,39(7):734.
17Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use[J]. J Solid Mech Mater Eng, 2009,3(3):425.
18Yu Y, Gu J, Shou F, et al. Competition mechanism between microstructure type and inclusion level in determining VHCF behavior of bainite/martensite dual steels[J]. Int J Fatigue, 2011,33:500.
19Yu Y, Gu J, Xu L, et al. Very high cycle fatigue behaviors of Mn-Si-Cr series bainite/ martensite dual phase steels[J]. Mater Des, 2010,31:3067.
20Zhao P, Gao G, Misra R, et al. Effect of microstructure on the very high cycle fatigue behavior of a bainite/martensite multiphase steel[J]. Mater Sci Eng A, 2015,630:1.
21Zhao P, Cheng C, Gao G, et al. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels[J]. Mater Sci Eng A, 2016,650:438.
22Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment[J]. Mater Sci Eng A, 2006,438:25.
23Speer J G, De Moor E, Findley K O, et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel[J]. Metall Mater Trans A, 2011,42(12):3591.
24Gao G, Zhang H, Gui X, et al. Enhanced strain hardening capacity in a lean alloy steel treated by a “disturbed” bainitic austempering process[J]. Acta Mater, 2015,101:31.
25Gui X, Gao G, Guo H, et al. Effect of bainitic transformation du-ring BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel[J]. Mater Sci Eng A, 2017,684:598.
26Gao G, Zhang B, Cheng C, et al. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process[J]. Int J Fatigue, 2016,92:203.
27Zhao P, Zhang B, Cheng C, et al. The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength MN-SI-Cr-C steel[J]. Mater Sci Eng A, 2015,645:116.
28Gui X L, Zhang B X, Gao G H, et al. Fatigue behavior of bainite/martensite multiphase high strength steel treated by quenching-partitioning-tempering process[J]. Acta Metall Sin, 2016,52(9):1036.
桂晓露, 张宝祥, 高古辉, 等. QPT 处理贝氏体/马氏体复相高强钢疲劳断裂特性研究[J]. 金属学报, 2016,52(9):1036.
29Olivares R O, Garcia C I, DeArdo A, et al. Advanced metallurgical alloy design and thermomechanical processing for rails steels for North American heavy haul use[J]. Wear, 2011,271(1):364.
30Wang W J, Guo H M, Du X, et al. Investigation on the damage mechanism and prevention of heavy-haul railway rail[J]. Eng Fai-lure Anal, 2013,35:206.
31Kimura T, Takemasa M, Honjo M. Development of SP3 rail with high wear resistance and rolling contact fatigue resistance for heavy haul railways[J]. JFE GIHO, 2010,26:11.
32Kern A, Schmedders H, Zimmermann A. The development of bainitic steels for special railway system requirements[C]∥39th Mechanical Working and Steel Processing Conference Proceedings. In-dianapolis, Indiana, 1997:1015.
33Jones J A, Perlman A B, Orringer O. Tailoring heat treatment and composition for production of on-line head-hardened bainitic rail[C]∥ Iron and Steel Society/AIME, 39th Mechanical Working and Steel Processing Conference Proceedings. Indianapolis, Indiana, 1997.
34Wang K, Tan Z, Gao G, et al. Ultrahigh strength-toughness combination in Bainitic rail steel:The determining role of austenite stability during tempering[J]. Mater Sci Eng A, 2016,662:162.
35Gui X, Wang K, Gao G, et al. Rolling contact fatigue of bainitic rail steels:The significance of microstructure[J]. Mater Sci Eng A, 2016,657:82.
[1] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[2] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[3] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[4] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[5] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[6] 樊立峰, 杨玉龙, 岳尔斌, 郭洪飞, 黄娇, 高军. 回火温度对2%Mn高强钢组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080090-7.
[7] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[8] 周华生, 曹燕, 章小峰, 吴迪, 赵鑫磊, 邢梅, 林方敏, 江雅. 多尺度实验测试评价高强钢氢脆的研究进展[J]. 材料导报, 2024, 38(10): 22110194-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
[11] 温家馨, 李化建, 杨志强, 李子春, 黄法礼, 王振, 易忠来, 谢永江. 高速铁路无砟轨道混凝土动态性能及其评价方法综述[J]. 材料导报, 2023, 37(20): 22010181-10.
[12] 陆万全, 乔及森, 王磊, 刘永涛, 冯睿, 祝伟. 960高强钢脉冲TIG电弧增材制造热过程及组织与力学性能研究[J]. 材料导报, 2023, 37(14): 21110135-7.
[13] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[14] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[15] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed