Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23080090-7    https://doi.org/10.11896/cldb.23080090
  先进有色金属材料加工及性能调控 |
回火温度对2%Mn高强钢组织和性能的影响
樊立峰1,2, 杨玉龙1, 岳尔斌3, 郭洪飞1,*, 黄娇1, 高军4
1 内蒙古工业大学材料科学与工程学院,呼和浩特 010051
2 内蒙古工业大学稀土金属材料工程研究中心,呼和浩特 010051
3 浙江省冶金研究院有限公司,杭州 310007
4 内蒙古包钢钢联股份有限公司制造部,内蒙古 包头 014010
Influence of Tempering Temperature on the Microstructure and Mechanical Properties of 2%Mn High Strength Steel
FAN Lifeng1,2, YANG Yulong1, YUE Erbin3, GUO Hongfei1,*, HUANG Jiao1, GAO Jun4
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Engineering Research Center of Rare Earth Metals, Inner Mongolia University of Technology, Hohhot 010051, China
3 Zhejiang Metallurgical Research Institute Co., Ltd., Hangzhou 310007,China
4 Manufacturing Dept. of Inner Mongolia Baotou Steel Union Co.,Ltd., Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 20273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高强度高塑性是先进高强钢发展的方向,本工作以2%Mn钢为研究对象,通过控制回火温度实现高强度高塑性最佳匹配,并采用SEM、TEM、XRD等技术分析影响2%Mn高强钢组织和力学性能的机制。结果表明:2%Mn高强钢经珠光体区等温退火后组织为铁素体、珠光体、低碳马氏体和残余奥氏体;随着回火温度升高,残余奥氏体体积分数由退火态的6.78%持续降低至425 ℃回火态的2.55%,回火温度继续升高,残余奥氏体体积分数基本不变,维持在稳定水平;随着回火温度升高,铁素体含量持续增加,位错密度、抗拉强度、屈服强度、硬度持续降低,延伸率先增加后降低;2%Mn钢经425 ℃回火后,铁素体平均板条宽度为95.1 nm,位错密度为2.6×1014 m-2,碳化物平均直径为13.9 nm,抗拉强度为1 770 MPa,屈服强度为1 450 MPa,伸长率为9.84%,强塑积达到最大值17.4 GPa·%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊立峰
杨玉龙
岳尔斌
郭洪飞
黄娇
高军
关键词:  2%Mn高强钢  回火  残留奥氏体  力学性能    
Abstract: Development direction of advanced high-strength steel is high strength and high plasticity. In this work, the 2%Mn steel as the research subject, and the best matching of high strength and high plasticity was achieved by controlling the tempering temperature, the SEM, TEM and XRD were used to analyze the influence mechanism of microstructure and mechanical properties. the results show that: The steel was organized as ferrite, pearlite, low carbon martensite and residual austenite after isothermal annealing in the pearllet region; the residual austenite volume fraction continuously decreased from 6.78% of the annealed state to 2.55% of the 425 ℃ tempering state, then the residual austenite volume fraction was basically unchanged and maintained at a stable level as the tempering temperature increases further; with the increase of tempering temperature, ferrite content continues to increase, dislocation density, tensile strength, yield strength and hardness continuous to decrease, and extension increases first then decreasing; after 425 ℃ tempering, the average batten width of ferrite was 95.1 nm, dislocation density was 2.6×1014 m-2, average diameter of carbide was 13.9 nm, tensile strength was 1 770 MPa, yield strength was 1 450 MPa, elongation was 9.84%, and the strong plastic product reached maximum of 17.4 GPa·%.
Key words:  2%Mn high strength steel    tempering    retained austenite    mechanical property
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG142.71  
基金资助: 国家自然科学基金(52361025);内蒙古科技计划项目(2022ZY0001;2022YFHH0079);内蒙古自治区“高等学校青年科技人才发展项目”(NJYT23116;JY20240063)
通讯作者:  * 郭洪飞, 内蒙古工业大学材料科学与工程学院教授、博士研究生导师。2005年内蒙古工业大学工业设计专业本科毕业, 2007年内蒙古工业大学材料加工工程专业硕士毕业, 2021年内蒙古工业大学材料科学与工程专业博士毕业。主要从事稀土功能材料、石墨烯改性材料方面的研究工作。授权发明专利24项, 制定国家标准4项。ghf-2005@163.com   
作者简介:  樊立峰, 内蒙古工业大学材料科学与工程学院教授、博士研究生导师。2004年河北理工大学金属材料工程专业本科毕业, 2007年昆明理工大学钢铁冶金专业硕士毕业, 2014年钢铁研究总院钢铁冶金博士毕业后到内蒙古工业大学工作至今。主要从事高强钢、电工钢方面的研究工作。发表论文40余篇, 获内蒙古自治区科技进步奖1项。
引用本文:    
樊立峰, 杨玉龙, 岳尔斌, 郭洪飞, 黄娇, 高军. 回火温度对2%Mn高强钢组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080090-7.
FAN Lifeng, YANG Yulong, YUE Erbin, GUO Hongfei, HUANG Jiao, GAO Jun. Influence of Tempering Temperature on the Microstructure and Mechanical Properties of 2%Mn High Strength Steel. Materials Reports, 2024, 38(15): 23080090-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080090  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23080090
1 Wang C Y, Chang Y, Zhou F L, et al. Acta Metallurgica Sinica, 2020, 56(4), 400 (in Chinese).
王存宇, 常颖, 周峰峦, 等. 金属学报, 2020, 56(4), 400.
2 Wang C Y, Yang J, Chang Y, et al. Iron & Steel, 2019, 54(2), 1 (in Chinese).
王存宇, 杨洁, 常颖, 等. 钢铁, 2019, 54(2), 1.
3 Zackay V E, Parker E R, Fahr D, et al. Transactions of the ASM, 1967, 60(2), 252.
4 Zhu G H, Ding H L, Wang X N, et al. Materials China, 2018, 37(10), 826 (in Chinese).
朱国辉, 丁汉林, 王晓南, 等. 中国材料进展, 2018, 37(10), 826.
5 Speer J, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611.
6 Qi J J, Huang Y H, Zhang Y. Microalloyed steel. Metallurgical Industry press, China, 2006 (in Chinese).
齐俊杰, 黄运华, 张跃. 微合金化钢, 冶金工业出版社, 2006.
7 Hu B, Guo H, Misra R D K, et al. Materials Characterization, 2021, 176, 111077.
8 Talebi S H, Jahazi M, Melkonyan H. Materials, 2018, 11(8), 1441.
9 Xun M N, Zhang X L, Qi Z P, et al. Ironmaking & Steelmaking, 2022, 50(2), 142.
10 Rumana H, Farshid P, Veena S. Materials Characterization, 2019, 149, 239.
11 Wang K, Gui X L, Bai B Z, et al. Materials Science & Engineering A, 2022, 850, 143525.
12 Chen K, Jiang Z H, Liu F B, et al. Materials Science & Engineering A, 2020, 790, 139742.
13 Luo P, Tan Z L, Zhang W L, et al. Steel Research International, DOI: 10. 1002/srin. 202200933.
14 YB/T5338-2006. Retained austenite in steel-quantitative determination-method of X-ray diffractometer, Standards Press of China, 2006 (in Chinese).
YB/T5338-2006. 钢中残余奥氏体定量测量X射线衍射仪法, 中国标准出版社, 2006.
15 Bhadeshia H K D H, David S A, Vitek J M, et al. Materials Science and Technology, 1991, 7, 686.
16 Sugimoto K l, Sakaguchi J, lida T, et al. ISIJ International, 2000, 40(9), 920.
17 Ståhlkrantz A, Hedström P, Sarius N, et al. Metallurgical and Materials Transactions A, 2020, 51, 6470.
18 Guo N. A study on microstructural characterization and mechanical properties of cold drawing pearlitic steel wires for bridge cabled. Ph. D. Thesis, Chongqing University, China, 2012 (in Chinese).
郭宁. 桥梁缆索用冷拔珠光体钢丝微观组织表征及力学性能研究. 博士学位论文, 重庆大学, 2012.
19 Jia L Y. Effect of reverse phase transformation annealing on microstructure and properties of the third medium manganese automotive stee. Master’s Thesis, Inner Mongolia University of Technology, China, 2021 (in Chinese).
贾丽英. 逆相变退火工艺对第三代中锰汽车钢组织、性能影响研究. 硕士学位论文, 内蒙古工业大学, 2021.
20 Yang K, Ding W, Liu S L, et al. Steel Research International, 2021, 92(2), 2000344.
21 Williamson G K, Hall W H. Acta Metallurgica, 1953, 1, 22.
22 Williamson G K, Smallman R E. Philosophical Magazine A, 1956, 1(1), 34.
23 Chen H, Ding W H, Liang L, et al. Transactions of Materials and Heat Treatment, 2023, 44(4), 129 (in Chinese).
陈灏, 丁文红, 梁亮, 等. 材料热处理学报, 2023, 44(4), 129.
24 Yuan F. Microstructure evolution during 700L tempering and its effect on residual stress. Master’s Thesis, Wuhan University of Science and Technology, China, 2020 (in Chinese).
袁飞. 700L回火过程的组织演变及其对残余应力的影响. 硕士学位论文, 武汉科技大学, 2020.
25 Ding W H. Study on the evolution of residual stress during continuous cooling and annealing process of high strength steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
丁文红. 高强钢连续冷却及退火过程残余应力演变规律研究. 博士学位论文, 北京科技大学, 2020.
26 Ashby M F. Strengthening methods in crystals, Applied Science Publishers Ltd, UK, 1971.
27 Chen L S, Li Y, Zhang M S, et al. Acta Metallurgica Sinica, 2017, 53(11), 1418 (in Chinese).
陈连生, 李跃, 张明山, 等. 金属学报, 2017, 53(11), 1418.
28 Lis J, Lis A, Kolan C. Materials Characterization, 2008, 59(8), 1021.
29 Ding R, Tang D, Chen Y L, et al. Chinese Journal of Engineering, 2014(11), 1476(in Chinese).
丁然, 唐荻, 陈银莉, 等. 北京科技大学学报, 2014(11), 1476.
30 Xie Z J, Shang C J, Zhou W H, et al. Acta Metallurgica Sinica, 2016, 52(2), 224 (in Chinese).
谢振家, 尚成嘉, 周文浩, 等. 金属学报, 2016, 52(2), 224.
31 Zhao Z Z, Tong T T, Zhao A M, et al. Chinese Journal of Engineering, 2014, 36(S1), 133 (in Chinese).
赵征志, 佟婷婷, 赵爱民, 等. 工程科学学报, 2014, 36(S1), 133.
32 Ma Y. Materials Science & Technology, 2017, 33(15), 1.
33 Shao C, Hui W, Zhang Y, et al. Materials Science & Engineering A, 2017, 682, 45.
34 Du L X, Yao S J, Zhou M, et al. Materials Science and Technology, 2011, 27(12), 1814.
35 Li J G, Huang H L, Zhao K, et al. Transactions of Materials and Heat Treatment, 2014, 35(5), 131 (in Chinese).
李激光, 黄海亮, 赵堃, 等. 材料热处理学报, 2014, 35(5), 131.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed