Influence of Tempering Temperature on the Microstructure and Mechanical Properties of 2%Mn High Strength Steel
FAN Lifeng1,2, YANG Yulong1, YUE Erbin3, GUO Hongfei1,*, HUANG Jiao1, GAO Jun4
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 2 Engineering Research Center of Rare Earth Metals, Inner Mongolia University of Technology, Hohhot 010051, China 3 Zhejiang Metallurgical Research Institute Co., Ltd., Hangzhou 310007,China 4 Manufacturing Dept. of Inner Mongolia Baotou Steel Union Co.,Ltd., Baotou 014010, Inner Mongolia, China
Abstract: Development direction of advanced high-strength steel is high strength and high plasticity. In this work, the 2%Mn steel as the research subject, and the best matching of high strength and high plasticity was achieved by controlling the tempering temperature, the SEM, TEM and XRD were used to analyze the influence mechanism of microstructure and mechanical properties. the results show that: The steel was organized as ferrite, pearlite, low carbon martensite and residual austenite after isothermal annealing in the pearllet region; the residual austenite volume fraction continuously decreased from 6.78% of the annealed state to 2.55% of the 425 ℃ tempering state, then the residual austenite volume fraction was basically unchanged and maintained at a stable level as the tempering temperature increases further; with the increase of tempering temperature, ferrite content continues to increase, dislocation density, tensile strength, yield strength and hardness continuous to decrease, and extension increases first then decreasing; after 425 ℃ tempering, the average batten width of ferrite was 95.1 nm, dislocation density was 2.6×1014 m-2, average diameter of carbide was 13.9 nm, tensile strength was 1 770 MPa, yield strength was 1 450 MPa, elongation was 9.84%, and the strong plastic product reached maximum of 17.4 GPa·%.
樊立峰, 杨玉龙, 岳尔斌, 郭洪飞, 黄娇, 高军. 回火温度对2%Mn高强钢组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080090-7.
FAN Lifeng, YANG Yulong, YUE Erbin, GUO Hongfei, HUANG Jiao, GAO Jun. Influence of Tempering Temperature on the Microstructure and Mechanical Properties of 2%Mn High Strength Steel. Materials Reports, 2024, 38(15): 23080090-7.
1 Wang C Y, Chang Y, Zhou F L, et al. Acta Metallurgica Sinica, 2020, 56(4), 400 (in Chinese). 王存宇, 常颖, 周峰峦, 等. 金属学报, 2020, 56(4), 400. 2 Wang C Y, Yang J, Chang Y, et al. Iron & Steel, 2019, 54(2), 1 (in Chinese). 王存宇, 杨洁, 常颖, 等. 钢铁, 2019, 54(2), 1. 3 Zackay V E, Parker E R, Fahr D, et al. Transactions of the ASM, 1967, 60(2), 252. 4 Zhu G H, Ding H L, Wang X N, et al. Materials China, 2018, 37(10), 826 (in Chinese). 朱国辉, 丁汉林, 王晓南, 等. 中国材料进展, 2018, 37(10), 826. 5 Speer J, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611. 6 Qi J J, Huang Y H, Zhang Y. Microalloyed steel. Metallurgical Industry press, China, 2006 (in Chinese). 齐俊杰, 黄运华, 张跃. 微合金化钢, 冶金工业出版社, 2006. 7 Hu B, Guo H, Misra R D K, et al. Materials Characterization, 2021, 176, 111077. 8 Talebi S H, Jahazi M, Melkonyan H. Materials, 2018, 11(8), 1441. 9 Xun M N, Zhang X L, Qi Z P, et al. Ironmaking & Steelmaking, 2022, 50(2), 142. 10 Rumana H, Farshid P, Veena S. Materials Characterization, 2019, 149, 239. 11 Wang K, Gui X L, Bai B Z, et al. Materials Science & Engineering A, 2022, 850, 143525. 12 Chen K, Jiang Z H, Liu F B, et al. Materials Science & EngineeringA, 2020, 790, 139742. 13 Luo P, Tan Z L, Zhang W L, et al. Steel Research International, DOI: 10. 1002/srin. 202200933. 14 YB/T5338-2006. Retained austenite in steel-quantitative determination-method of X-ray diffractometer, Standards Press of China, 2006 (in Chinese). YB/T5338-2006. 钢中残余奥氏体定量测量X射线衍射仪法, 中国标准出版社, 2006. 15 Bhadeshia H K D H, David S A, Vitek J M, et al. Materials Science and Technology, 1991, 7, 686. 16 Sugimoto K l, Sakaguchi J, lida T, et al. ISIJ International, 2000, 40(9), 920. 17 Ståhlkrantz A, Hedström P, Sarius N, et al. Metallurgical and Materials Transactions A, 2020, 51, 6470. 18 Guo N. A study on microstructural characterization and mechanical properties of cold drawing pearlitic steel wires for bridge cabled. Ph. D. Thesis, Chongqing University, China, 2012 (in Chinese). 郭宁. 桥梁缆索用冷拔珠光体钢丝微观组织表征及力学性能研究. 博士学位论文, 重庆大学, 2012. 19 Jia L Y. Effect of reverse phase transformation annealing on microstructure and properties of the third medium manganese automotive stee. Master’s Thesis, Inner Mongolia University of Technology, China, 2021 (in Chinese). 贾丽英. 逆相变退火工艺对第三代中锰汽车钢组织、性能影响研究. 硕士学位论文, 内蒙古工业大学, 2021. 20 Yang K, Ding W, Liu S L, et al. Steel Research International, 2021, 92(2), 2000344. 21 Williamson G K, Hall W H. Acta Metallurgica, 1953, 1, 22. 22 Williamson G K, Smallman R E. Philosophical Magazine A, 1956, 1(1), 34. 23 Chen H, Ding W H, Liang L, et al. Transactions of Materials and Heat Treatment, 2023, 44(4), 129 (in Chinese). 陈灏, 丁文红, 梁亮, 等. 材料热处理学报, 2023, 44(4), 129. 24 Yuan F. Microstructure evolution during 700L tempering and its effect on residual stress. Master’s Thesis, Wuhan University of Science and Technology, China, 2020 (in Chinese). 袁飞. 700L回火过程的组织演变及其对残余应力的影响. 硕士学位论文, 武汉科技大学, 2020. 25 Ding W H. Study on the evolution of residual stress during continuous cooling and annealing process of high strength steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese). 丁文红. 高强钢连续冷却及退火过程残余应力演变规律研究. 博士学位论文, 北京科技大学, 2020. 26 Ashby M F. Strengthening methods in crystals, Applied Science Publishers Ltd, UK, 1971. 27 Chen L S, Li Y, Zhang M S, et al. Acta Metallurgica Sinica, 2017, 53(11), 1418 (in Chinese). 陈连生, 李跃, 张明山, 等. 金属学报, 2017, 53(11), 1418. 28 Lis J, Lis A, Kolan C. Materials Characterization, 2008, 59(8), 1021. 29 Ding R, Tang D, Chen Y L, et al. Chinese Journal of Engineering, 2014(11), 1476(in Chinese). 丁然, 唐荻, 陈银莉, 等. 北京科技大学学报, 2014(11), 1476. 30 Xie Z J, Shang C J, Zhou W H, et al. Acta Metallurgica Sinica, 2016, 52(2), 224 (in Chinese). 谢振家, 尚成嘉, 周文浩, 等. 金属学报, 2016, 52(2), 224. 31 Zhao Z Z, Tong T T, Zhao A M, et al. Chinese Journal of Engineering, 2014, 36(S1), 133 (in Chinese). 赵征志, 佟婷婷, 赵爱民, 等. 工程科学学报, 2014, 36(S1), 133. 32 Ma Y. Materials Science & Technology, 2017, 33(15), 1. 33 Shao C, Hui W, Zhang Y, et al. Materials Science & Engineering A, 2017, 682, 45. 34 Du L X, Yao S J, Zhou M, et al. Materials Science and Technology, 2011, 27(12), 1814. 35 Li J G, Huang H L, Zhao K, et al. Transactions of Materials and Heat Treatment, 2014, 35(5), 131 (in Chinese). 李激光, 黄海亮, 赵堃, 等. 材料热处理学报, 2014, 35(5), 131.