Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15175-15182    https://doi.org/10.11896/cldb.20030203
  金属与金属基复合材料 |
钛微合金化低碳钢的研究进展
宋扬1, 刘丽华2, 张中武1
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150000
2 南京钢铁股份有限公司,南京 210035
Research Progress on the Titanium Microalloyed Low Carbon Steels
SONG Yang1, LIU Lihua2, ZHANG Zhongwu1
1 School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150000, China
2 Nanjing Iron & Steel Co., LTD, Nanjing 210035, China
下载:  全 文 ( PDF ) ( 11678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工业水平的发展对低合金低碳钢的性能提出了更高的要求。较高的强度、良好的韧性和抗疲劳能力以及优异的耐蚀性等是低合金高强钢开发的主要方向。微合金化处理通过在钢中加入微量的合金元素可以明显地改善材料的性能。钛微合金化成本较低,能够明显细化奥氏体晶粒,提高材料的强度,具有广泛的应用价值。
微合金化元素钛与钢中的碳元素、氮元素反应生成的TiN、TiC以及Ti(C,N)第二相粒子所产生的沉淀强化、细晶强化等作用能够明显改善材料的性能。TiN粒子析出温度较高,细小的TiN粒子可以抑制高温下晶粒的长大;而粗大的TiN粒子对材料的性能不利。TiC粒子可以在铁素体基体中随机沉淀析出,并与基体保持一定的位相关系,还可以钉扎位错、细化晶粒。Ti(C,N)粒子由TiC与TiN互溶形成,可以钉扎位错,产生析出强化。第二相粒子的尺寸受热处理工艺等影响,因此,需要严格调控材料的热处理工艺,避免粗大第二相粒子的形成。钛的微合金化作用还受到钢中其他合金元素的影响,钛与钼、锰、硼等元素可以产生协同作用,相互促进,有利于材料的强韧性匹配。将钛元素与铌元素、钒元素中的一种或两种同时引入合金钢中进行复合微合金化处理,钛铌复合可以在提高材料强度的同时避免塑性的大量损失,钛钒复合可以降低强度提高时对材料韧性的损害并有效提高材料的淬透性,铌钒钛复合可以结合三种元素的优点更好地改善材料的性能。但是,复合微合金化对合金元素含量具有较高的要求,含量控制不当会严重影响材料的性能。
文中主要介绍了近年来国内外关于低碳钢的钛微合金化的研究现状,并针对微合金化的强韧化机理研究进展进行了分析和评述,以期为制备性能优良、适合实际生产的微合金化钢提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋扬
刘丽华
张中武
关键词:  微合金化  细晶强化  固溶强化  碳化物  氮化物    
Abstract: Acombination of high strength, good toughness, fatigue resistance and excellent corrosion resistance is required for developing new microalloyed low carbon steels. Microalloying treatment is one of most effective methods, in which small amount of alloying elements, such as Nb, V or Ti can improve the performance of steels significantly. The microalloying element Ti can react with carbon and nitrogen in the steel forming TiN, TiC and Ti(C,N) particles. These particles play important roles in precipitation strengthening, grain refinement strengthening and some other effects.
The precipitation temperature of TiN particles is high, and the fine TiN particles can inhibit the growth of the grains at high temperature, specifi-cally the growth of prior austenite. TiC particles can be randomly precipitated in the ferrite matrix and maintain a certain crystal relationship with the matrix. Ti(C,N) particles are composed of TiC and TiN, which can pin dislocations and contribute to the precipitation strengthening. The size, morphology and distribution of these particles are influenced by the heat treatment process and composition. Therefore, the content of Ti and the heat treatment should be controlled carefully to avoid the formation of coarse second phase particles. The effects of microalloying Ti can also be influenced by other alloying elements in steels, such as molybdenum, manganese, boron and other elements. These alloying elements can affect each other, forming the synergistic effects, which can be applied to improve both strength and toughness. Ti can also be alloyed with Nb or V or both. Alloying of Ti and Nb together can improve the strength of the material without a large loss of plasticity. While Ti and V combination can improve the strength without sacrificing the toughness of the steels. However, it should be noted that the content of microalloying elements should be controlled carefully to avoid deteriorating the performance.
This paper mainly introduces the current research status on the microalloying of Ti in low carbon steels. The strengthening and toughening mechanisms of the microalloying are also reviewed and discussed. These may provide some insights in designing and producing microalloyed steels with excellent performance.
Key words:  microalloying    fine grain strengthening    solid solution strengthening    carbide    nitride
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TG142.1  
基金资助: 南京钢铁股份有限公司资金支持项目;黑龙江省自然科学基金(JC2017012;LH2019E030)
作者简介:  宋扬,2014年6月毕业于哈尔滨工业大学(威海),获得工学学士学位。现为哈尔滨工程大学硕士研究生,在张中武教授的指导下进行研究。目前主要研究领域为低碳钢的微合金化。
张中武,博士 哈尔滨工程大学教授,博士研究生导师,黑龙江省“龙江学者”讲座教授,黑龙江省杰出青年科学基金获得者,哈尔滨工程大学金属材料研究所所长。自2013年6月起,加入哈尔滨工程大学材料科学与化学工程学院,长期从事纳米相强化钢、纳米相和层错能调控合金设计及其在舰船和核能领域的应用等研究。发表SCI论文80多篇,获授权专利22项,多次受邀出席国内外会议并发表演讲。获省部级一、二、三等奖各一项(均排名第一)。
引用本文:    
宋扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
SONG Yang, LIU Lihua, ZHANG Zhongwu. Research Progress on the Titanium Microalloyed Low Carbon Steels. Materials Reports, 2021, 35(15): 15175-15182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030203  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15175
1 Luo X, Yang C S, Kang Y L, et al. Chinese Journal of Engineering,2016,38(2),230(in Chinese).
罗许,杨财水,康永林,等.工程科学学报,2016,38(2),230.
2 Uemori R, Fujioka M, Inoue T, et al. Nippon Steel Technical Report,2012,101(8),37.
3 Yang J. Study on microstructure and properties of titanium and niobium muti-microalloyed steel. Master’s Thesis, Wuhan University of Science and Technology, China,2013(in Chinese).
杨静.钛铌复合微合金化钢组织和性能研究.硕士学位论文,武汉科技大学,2013.
4 Thridandapani R R, Misra R D K, Mannering T, et al. Materials Science & Engineering A,2006,422(1-2),287.
5 Karmakara A, Biswasa S, Mukherjeeb S, et al. Materials Science & Engineering A,2017,690,158.
6 Karmakara A, Mukherjeeb S, Kunduc S, et al. Materials Characterization,2017,132,31.
7 Dai Q X, Cheng X N. Metal Material Science, Chemical Industry Press, China,2011(in Chinese).
戴起勋,程晓农.金属材料学,化学工业出版社,2011.
8 Chen J, Ren J K, Liu Z Y, et al. Materials Science & Engineering A,2020,772,138733.
9 Hashemi S G, Eghbali B. International Journal of Minerals Metallurgy and Materials,2018,25(3),339.
10 Inoue K, Ohnuma I, Ohtani H, et al. The Iron and Steel Institute of Japan International,1998,38(9),991.
11 Wei S H. Effects on microstructures and mechanical properties of cast steel by microalloying. Master’s Thesis, Hebei University of Science and Technology, China,2009(in Chinese).
魏胜辉.微合金化对铸钢组织和力学性能的影响.硕士学位论文,河北科技大学,2009.
12 Mao X P. Titanium Microalloyed Steel, Metallurgical Industry Press, China,2016(in Chinese).
毛新平.钛微合金钢,冶金工业出版社,2016.
13 Xu F Y, Bai B Z, Fang H S. Heat Treatment of Metals,2007,32(12),29(in Chinese).
许峰云,白秉哲,方鸿生.金属热处理,2007,32(12),29.
14 Wu S W, Liu Z Y, Zhou X G, et al. Journal of Central South University,2017,24(12),2767.
15 Lv S X, Chen S, Mao X P, et al. Steel Vanadium and Titanium,2011,32(2),43(in Chinese).
吕盛夏,陈事,毛新平,等.钢铁钒钛,2011,32(2),43.
16 Cai Z, Han B, Tan W, et al. China Metallurgy,2015,25(2),1(in Chinese).
蔡珍,韩斌,谭文,等.中国治金,2015,25(2),1.
17 Chen M A, Wu C S, Wang J G. Journal of Welding,2006,23(3),37(in Chinese).
陈茂爱,武传松,王建国.焊接学报,2006,23(3),37.
18 Ohta H, Suito H. The Iron and Steel Institute of Japan International,2007,47(2),197.
19 Dong Y, Du L X, Hu J, et al. Journal of Iron and Steel Research,2019,31(2),190(in Chinese).
董营,杜林秀,胡军,等.钢铁研究学报,2019,31(2),190.
20 Yang S T, Gao Y L, Xue X X, et al. Ironmaking & Steelmaking,2018,45(10),959.
21 Peng Z W, Li L J, Gao J X, et al. Materials Science & Engineering A,2016,657,413.
22 Huo X D, Xia J N, Li L J, et al. Materials Research Express,2018,5(6),1.
23 Vincent D, Sylvie M, Florence R, et al. Metallurgical and Materials Transaction,2015,46A(7),2793.
24 Liu T, Long M J, Chen D F, et al. Journal of Iron and Steel Research International,2018,25(10),1043.
25 Duan H J, Zhang Y, Ren Y, et al. Journal of Iron and Steel Research International,2019,26(9),962.
26 Jin Y L, Du S L. Ironmaking & Steelmaking,2018,45(3),224.
27 Yan W, Shan Y Y, Yang K. Metallurgical and Materials Transaction,2006,37A(7),2147.
28 Qi J J, Huang Y H, Zhang Y. Microalloyed Steel, Metallurgical Industry Press, China,2006(in Chinese).
齐俊杰,黄运华,张跃.微合金化钢,冶金工业出版社,2006.
29 Ren J K, Wu S W, Chen Q Y, et al. Heat Treatment of Metals,2017,42(6),137(in Chinese).
任家宽,吴思炜,陈其源,等.金属热处理,2017,42(6),137.
30 Peng Z W. Research on the strengthening and toughening mechanisms of Ti microalloyed hot-rolled high-strength steel plates. Ph.D. Thesis, South China University of Technology, China,2016(in Chinese).
彭政务.钛微合金化热轧高强度钢板的强韧化机理研究.博士学位论文,华南理工大学,2016.
31 Wang T P, Kao F H, Wang S H, et al. Materials Letters,2011,65(2),396.
32 Xie S T, Liu Z Y, Wang Z, et al. Materials Characterization,2016,116,55.
33 Feng X W, Xie J, Xue W Y, et al. Journal of Iron and Steel Research International,2019,26,472.
34 Tsai S P, Jen C H, Yen H W, et al. Materials Characterization,2017,123,153.
35 Xu G, Gan X L, Ma G J, et al. Materials and Design,2010,31(6),2891.
36 Luo F F, Guo L P, Jin S X, et al. Journal of Nuclear Materials,2014,45(1-3),37.
37 Zhang L, Kannengiesser T. Materials Science and Engineering A,2014,613(8),326.
38 Shen Y F, Wang C M, Sunb X. Materials Science & Engineering A,2011,528,8150.
39 Lia X L, Lei C S, Tian Q, et al. Materials Science & Engineering A,2017,698,268.
40 Baker T N. Ironmaking & Steelmaking,2019,46(1),1.
41 Huo X D, Xia J N, Li L J, et al. Iron Steel Vanadium Titanium,2017,38(4),105(in Chinese).
霍向东,夏继年,李烈军,等.钢铁钒钛,2017,38(4),105.
42 Yang L, Li Y, Xue Z L, et al. China Foundry,2017,14(5),421.
43 Gunabalapandian K, Samanta S, Ranjan R, et al. Metallurgical & Materials Transactions A,2017,48(5),2099.
44 Xiao N, Tong M, Lan Y, et al. Acta Materialia,2006,54(5),1265.
45 Dong F T, Du L X, Liu X H, et al. Journal of Iron and Steel Research International,2013,20(4),39.
46 Yuan X M. Materials Science & Engineering A,2007,452-453,116.
47 Laureys A, Claeys L, De Seranno T, et al. Materials Characterization,2018,144,22.
48 Aucott L, Wen S W, Dong H. Materials Science & Engineering A,2015,622,194.
49 Chen C Y, Liao M H. Materials & Design,2020,186,108361.
50 Geng Y F, Li X, Zhou H L, et al. Journal of Alloys and Compounds,2020,821,153518.
51 Cao Y K, Liu Y, Liu B, et al. Intermetallics,2018,100,95.
52 Zhu Y C, Huang Q X, Shi X H, et al. Transactions of Nonferrous Metals Society of China,2018,28(8),1521.
53 Escobar J D, Poplawsky J D, Faria G A, et al. Materials & Design,2018,140,95.
54 Li C N, Li X L, Yuan G, et al. Materials Science & Engineering A,2016,673,213.
55 Gong P, Palmiere E J, Rainforth W M. Acta Materialia,2016,11915,43.
56 Phaniraj M P, Shin Y M, Lee J, et al. Materials Science & Engineering A,2015,6331,1.
57 Skubisz P, Lisiecki L, Micek P. Procedia Manufacturing,2015,2,428.
58 Zhao X P, Li X Q. Liugang Science and Technology,2017(5),27(in Chinese).
赵贤平,李显强.柳钢科技,2017(5),27.
59 Kong X W, Lan L Y, Hu Z Y, et al. Journal of Materials Processing Technology,2015,217,202.
60 Cho K S, Park S S, Choi D H, et al. Journal of Alloys and Compounds,2015,626,314.
61 Wang Z Q, Sun X J, Yang Z G, et al. Materials Science & Engineering A,2013,573,84.
62 Wang Z Q, Zhang H, Guo C H, et al. Materials and Design,2016,109,361.
63 Kim Y W, Song S W, Seo S J, et al. Materials Science & Engineering A,2013,565,430.
64 Chen C Y, Chen C C, Yang J R. Materials Characterization,2014,88,69.
65 Wang Z Q, Sun X J, Yang Z G, et al. Materials Science & Engineering A,2013,561,212.
66 Mukherjee S, Timokhina I, Zhu C, et al. Journal of Alloys and Compounds,2017,690,621.
67 Kobayashi Y, Takahashi J, Kawakami K. Scripta Materialia,2012,67,854.
68 Ma Y N, Du L X, Hu J. Journal of Materials Engineering,2015,43(9),1(in Chinese).
马娅娜,杜林秀,胡军.材料工程,2015,43(9),1.
69 Mukherjee S, Timokhina I B, Zhu C, et al. Acta Materialia,2013,61,2521.
70 Tewary N K, Ghosha S K, Saha R, et al. Philosophical Magazine,2019,99(20),2487.
71 Peng S D, Zhou J L, Liu K. Hot Working Technology,2016,45(5),125(in Chinese).
彭世丹,周家林,刘凯.热加工工艺,2016,45(5),125.
72 Chen Z Y, Li J X, Qi J J, et al. Steel Research International,2019,90,1.
73 Cao Y B, Xiao F R, Qiao G Y, et al. Materials Science & Engineering A,2011,530,277.
74 Kamikawa N, Sato K, Miyamoto G, et al. Acta Materialia,2015,83,383.
75 Qiao G Y, Cao Y B, Liao B, et al. Transactions of the Indian Institute of Metals,2018,71(3),627.
76 Gan X L, Xu G, Zhao G, et al. Journal of Wuhan University of Technology-Mater,2018,33(5),1193.
77 Yuan S Q, Liang G L. Materials Letters,2009,63,2324.
78 Gan X L, Yuan Q, Zhao G, et al. Steel Research International,2019,90,1.
79 Kalantar M, Najafi H, Reza Afshar M. Metals and Materials Internatio-nal,2019,25,229.
80 Chen J, Lv M Y, Tang S, et al. Materials Science & Engineering A,2014,594,389.
81 Zhou Y, Xue H D, Sun X L. Science & Technology of Baotou Steel Corporation,2015,41(4),60(in Chinese).
周彦,薛虎东,孙雪丽.包钢科技,2015,41(4),60.
82 Dong J, Liu C X, Liu Y C, et al. Fusion Engineering and Design,2017,125,415.
83 Jung J G, Park J S, Kim J Y, et al. Materials Science & Engineering A,2011,528,5529.
84 Dong J, Zhou X S, Liu Y C, et al. Materials Science & Engineering A,2017,683,215.
85 Jang J H, Lee C H, Heo Y U, et al. Acta Materialia,2012,60,208.
[1] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[2] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[3] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[4] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[5] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[6] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
[7] 王诗蒙, 杨文朋, 崔红保, 郭学锋, 孙尧. Mg-Zn系合金沉淀硬化研究进展[J]. 材料导报, 2020, 34(Z1): 312-315.
[8] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[9] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[10] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[11] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[12] 黄章, 杜传治, 方金林, 于浩, 黎淑英, 宋成浩, 段晓妮. Nb微合金化对Q500MPa级热轧H型钢组织和性能的影响[J]. 材料导报, 2020, 34(14): 14175-14180.
[13] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[14] 马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
[15] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed