Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15169-15174    https://doi.org/10.11896/cldb.20010130
  金属与金属基复合材料 |
铝合金表面铈基转化膜研究进展
牛永胜, 姚夏妍, 李银丽, 汪友元, 李彦龙
西北矿冶研究院冶金新材料研究所,白银 730900
Progress of Cerium-based Conversion Coating on Aluminum Alloy Surface
NIU Yongsheng, YAO Xiayan, LI Yinli, WANG Youyuan, LI Yanlong
Metallurgical New Materials Research Institute, Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, China
下载:  全 文 ( PDF ) ( 5360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝合金具有成本低、强度质量比高、可加工性能良好等优点,被广泛应用于航空、交通、建筑等领域。但铝合金表面易发生小孔腐蚀和晶间腐蚀,需要进行防腐处理才能满足应用要求。稀土元素铈因具有特有的电子层结构和物理化学特性,是制备铝合金稀土转化膜最具优越性的元素,以此为防腐基材开发的稀土转化膜技术被认为是最有可能替代铬酸盐钝化的技术。
目前所报道的铈基转化膜工艺有化学浸泡法、溶胶-凝胶法、电化学法、磁控溅射法等。其中,化学浸泡法制备过程简单,但铈离子的转化和沉积速率较难控制一致,膜层微米级裂纹较多;溶胶-凝胶法制备的膜层与基体结合强度高,耐蚀性好,但需要大量铈盐,且产生较多废酸、碱液,成本高,环境污染大;电化学法在低温下实现性能可控的铈基转化膜,成本低,但成膜有大量晶间裂纹,结构疏松,成膜质量差;磁控溅射法制备的涂层均匀,成分可控,但靶材的利用率低,难以实现强磁性材料的低温高速溅射。总体来看,目前所报道的铈基转化膜工艺存在溶液体系稳定性差,所制备的转化膜层不稳定、容易开裂,以及制备成本较高的问题,难以满足工业化应用的要求。
铈基转化膜成膜机理被普遍认为是阴极成膜理论,即铝合金表面形成了氧化还原微电池。溶液中的溶解氧以及加入的H2O2可作为羟基的供体,通过改变溶液局部pH值、物质、电子和电荷浓度来影响稀土元素的氧化反应和在基体表面的沉积。铈基转化膜的耐蚀机理是阴极抑制机理,即在铝合金表面形成的铈基转化膜阻止了氧的传输和电子的转移和传递,从而阻止了阴极微区上的还原反应,防止了铝合金表面的腐蚀溶解。但该机制只强调了阴极抑制,而忽略了也可能发生的阳极抑制。同时,由于涉及到电化学动力学抑制,因此铈基转化膜有“自愈能力”。
本文综述了国内外铝合金铈基转化膜制备工艺的研究进展,指出了各工艺的优点和缺点,阐述了铈基转化膜主流成膜和耐蚀理论的研究,并对制备工艺的改进方向及未来理论的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛永胜
姚夏妍
李银丽
汪友元
李彦龙
关键词:  铝合金    转化膜  耐蚀机理    
Abstract: Aluminum alloy has been widely applied in aviation, transportation, construction and other fields with a wealth of merits such as low cost, high strength-to-mass ratio, good processability, etc. The corrosion protection, however, is necessary for applications as the pinhole corrosion and intergranular corrosion are prone to emerge on its surface. Cerium is one of the most advantageous rare-earth elements in terms of the preparation of conversion films on the substrate surface of aluminum alloys due to its unique electronic layer structure and physical and chemical properties, and the cerium-based conversion film technology developed is considered to be the most promising alternative to the chromate passivation.
Until now the technologies reported of cerium-based conversion films include chemical immersion, sol-gel method, electrochemical process, magnetron sputtering et al. Among them, chemical immersion is the simplest for the preparation process, but both conversion rate and deposition rate of cerium ions are difficult to control, and therefore there are many micron cracks present in the film layer. The sol-gel method endows the film with high bonding strength with hypokeimenon and excellent corrosion resistance, but requires substantial contents of cerium salts while producing a vast amount of waste acid or alkali solution. While the electrochemical process can achieve controllable cerium-based conversion films even at low temperature at a low price, the film causes a lot of intergranular cracks, loose structures as well as poor quality. The coating prepared by magnetron sputtering is uniform with controllable composition, but due to low utilization rate of the target this method fails to achieve low temperature and high speed sputtering for the strong magnetic materials. Overall, these methods still face various issues, such as poor stability of the solution system, the prepared conversion film layer being unstable and easy cracking, and high cost, which make it difficult to meet requirements of industrial application.
The formation mechanism of cerium-based conversion film is principally believed to be the cathode formation film theory, that is, the redox microcell is formed on the surface of aluminum alloy. The dissolved oxygen in the solution and added H2O2 can be used as the donor of hydroxyl group, and the local pH value, components, electron and charge concentration of the solution can be changed, benefitting the oxidation reaction of cerium elements and the deposition on the substrate surface. The corrosion resistance mechanism of the cerium-based conversion film is the cathodic inhibition, that is, the film formed on the surface of aluminum alloys prevents the oxygen transmission and electron transfer, consequently, preventing the reduction reaction on the cathode micro-zone and the corrosion and dissolution of the aluminum alloy. However, this mechanism only emphasizes the cathode inhibition, while ignoring the anode inhibition. Furthermore, these cerium-based conversion films demonstrate a self-healing ability since electrochemical kinetic inhibition takes place.
In this paper, the technological progress on the cerium-based conversion film for aluminum alloys at home and abroad was reviewed, and the advantages and disadvantages of technologies were also described. Moreover, the mainstream formation and anticorrosion theories were expounded. Finally, we predict the direction of process improvement and theory research in future.
Key words:  aluminum alloy    Ce    conversion film    corrosion resistance mechanism
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TB331  
基金资助: 甘肃省科技厅科技重大专项计划项目(17ZD2FD013)
作者简介:  牛永胜,2016年6月毕业于昆明理工大学,获得工学硕士学位。现为西北矿冶研究院冶金新材料研究所材料工程师。目前主要研究领域为层状功能复合材料。
引用本文:    
牛永胜, 姚夏妍, 李银丽, 汪友元, 李彦龙. 铝合金表面铈基转化膜研究进展[J]. 材料导报, 2021, 35(15): 15169-15174.
NIU Yongsheng, YAO Xiayan, LI Yinli, WANG Youyuan, LI Yanlong. Progress of Cerium-based Conversion Coating on Aluminum Alloy Surface. Materials Reports, 2021, 35(15): 15169-15174.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010130  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15169
1 Lin D Y, Li Y, Chen Y X, et al. Chinese Rare Earths,2016,37(6),121(in Chinese).
林德源,李一,陈云翔,等.稀土,2016,37(6),121.
2 Mansfeld F. Journal of Applied Electrochemistry,1995,25,187.
3 Mansfeld F, Wang Y, Shih H. Materials Science Forum,1992,111-112,191.
4 Wang C Y, Zhang Q, Kang P C, et al. Journal of University of Science and Technology Beijing,2008,30(6),630(in Chinese).
王春雨,张强,康鹏超,等.北京科技大学学报,2008,30(6),630.
5 Zhao L, Yu Q, Du W C, et al. Hot Working Technology,2017,46(16),133(in Chinese).
赵林,于强,杜文朝,等.热加工工艺,2017,46(16),133.
6 Harvey T G. Corrosion Engineering, Science and Technology,2013,48,248.
7 Yu X W, Zhou D R, Yin Z D, et al. The Chinese Journal of Nonferrous Metals,1999,9(1),73(in Chinese).
于兴文,周德瑞,尹钟大,等.中国有色金属学报,1999,9(1),73.
8 He Y H. Research of preparation and modification of cerium conversion coating on AA2219-T87 aluminum alloy. Master’s Thesis, Tianjin University, China,2013(in Chinese).
何艳红.AA2219-T87铝合金表面稀土铈转化膜的制备及改性研究.硕士学位论文,天津大学,2013.
9 Wang X, Zhu L, He X, et al. Applied Surface Science,2013,280,467.
10 Mahidashti Z, Shahrabi T, Ramezanzadeh B. Progress in Organic Coa-tings,2018,114,19.
11 Zhou C, Xu J, Jiang S. Materials Characterization,2010,61(2),249.
12 Fu G. Research on rare earth conversion coating technology on aluminum alloy surface. Master’s Thesis, Southwest Petroleum University, China,2016(in Chinese).
付贵.铝合金表面稀土转化膜技术研究.硕士学位论文,西南石油大学,2016.
13 Fernández-García M, Martínez-Arias A, Hanson J C, et al. Chemical Reviews,2004,104(9),4063.
14 Fujimori A. Physical Review B,1983,28(4),2281.
15 Skorodumova N, Ahuja R, Simak S, et al. Physical Review B,2001,64(11),1.
16 Carlos E C, Matthew J O, Willian G F. Current Opinion in Solid and Materials Science,2015,19(2),69.
17 Barranco V, Carmona N, Galvan J C, et al. Progress in Organic Coa-tings,2010,68(4),347.
18 Johansen H D, Brett C M A, Motheo A J. Corrosion Science,2012,63,342.
19 Kullgren J, Castleton C W M, Carsten M, et al. Journal of Chemical Physics,2010,132(5),1.
20 Hinton B R W. Material Forum,1986,10(3),12.
21 Sánchez-Amaya J M, Blanco G, Garcia-Garcia F J, et al. Surface & Coatings Technology,2012,213,105.
22 Venkatasubramanian G, Mideen A S, Abhay K J M, et al. Materials Chemistry and Physics,2014,148,262.
23 Yoganandan G, Premkumar K P, Balaraju J N. Surface & Coatings Technology,2015,270,249.
24 Dabalà M, Armelao L, Buchberger A, et al. Applied Surface Science,2001,172(3-4),312.
25 Valdez B, Kiyota S, Stoytcheva M, et al. Corrosion Science,2014,87,141.
26 André D, Petitjean J P. Surface & Coatings Technology,2005,194(1),1.
27 Liang J, Hu Y, Fan Y, et al. Surface & Interface Analysis,2013,45(8),1211.
28 Ng W F, Wong M H, Cheng F T. Materials Chemistry & Physics,2010,119(3),384.
29 Ljiljana S, Živković J B, Bajat P, et al. Progress in Organic Coatings,2015,79,43.
30 Kanani M, Danaee I, Maddahy M H. Materials and Corrosion,2014,65(11),1073.
31 Mansfeld F, Wang Y, Shih H. Electrochimica Acta,1992,37(12),2227.
32 Kasten L S, Grant J T, Grebasch N, et al. Surface & Coatings Technology,2001,140(1),11.
33 Yasakau K A, Carneiro J, Zheludkevich M L, et al. Surface and Coatings Technology,2014,246,6.
34 Hossein H, Mohsen M, Ehsan S, et al. Journal of Alloys and Compounds,2017,255(20),968.
35 Nicolò A D, Paussa L, Gobessi A, et al. Surface & Coatings Technology,2016,287,33.
36 Paussa L, Navarro N C R, Bravin D, et al. Progress in Organic Coatings,2012,74(2),311.
37 Hinton B R W. Journal of Alloys and Compounds,1992,180(1-2),15.
38 Shi T, Zuo Y, Zhao J M, et al. Electroplating & Finishing,2005,24(6),22(in Chinese).
石铁,左禹,赵景茂,等.电镀与防涂饰,2005,24(6),22.
39 Živković L S, Popić J P, Jegdić B V, et al. Surface & Coatings Technology, 2014, 240, 327.
40 Živković L S, Jegdić B V, Popić J P, et al. Progress in Organic Coatings,2013,76(10),1387.
41 Li L J, Li D. Journal of Materials Engineering,2001(3),23(in Chinese).
李凌杰,李荻.材料工程,2001(3),23.
42 Heller D K, Fahrenholtz W G, O’Keefe M J. Corrosion Science,2010,52(2),360.
43 Mansfeld F B, Wang Y, Lin S H. U.S. patent, US5194138,1993.
44 Kulinich S A, Akhtar A S. Russian Journal of Nonferrous Metals,2012,53(2),176.
45 Liu Y Y. Study on the preparation and corrosion-inhibition performance of cerium oxide-based coatings on 2024-T3 aluminum alloy deposited by magnetron sputtering. Ph.D Thesis, Chongqing University, China,2016(in Chinese).
刘园园.2024-T3铝合金表面磁控溅射沉积氧化铈基涂层的制备及耐腐蚀性能研究.博士学位论文,重庆大学,2016.
46 Hinton B R W, Arnott D R, Ryan N E. Materials Forum,1986,9(3),162.
47 Arnott D R, Hinton B R W, Ryan N E. Corrosion,1989,45(1),12.
48 Song J H, Liu Z, Cui X F, et al. The Chinese Journal of Nonferrous Metals,2016,26(3),568(in Chinese).
宋佳慧,刘喆,崔秀芳,等.中国有色金属学报,2016,26(3),568.
49 Li W F, Zhang K, Du J. Journal of Chinese Society for Corrosion and Protection,2012,32(1),39(in Chinese).
李文芳,张凯,杜军.中国腐蚀与防护学报,2012,32(1),39.
50 Domínguez-Crespo M A, Rodil S E, Torres-Huerta A M, et al. Surface and Coatings Technology,2009,204(5),571.
51 Heller D K, Fahrenholtz W G, O’Keefe M J. Materials Characterization,2011,62(11),1071.
52 Joshi S, Kulp E A, Fahrenholtz W G, et al. Corrossion Science,2012,60,290.
53 Castano C E, O’Kedfe M J, Fahrenholtz W G. Scripta Materialia,2013,69(6),489.
54 Uberuaga B P, Andersson D A, Stanek C R. Current Opinion in Solid State & Materials Science,2013,17(6),249.
55 Mahidashti Z, Shahrabi T, Ramezanzadeh B. Applied Surface Science,2016,390,623.
[1] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[2] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[3] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[4] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[5] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[6] 朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
[7] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[8] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[9] 丁亚茹, 陈芙蓉, 杨帆, 贾翠玲. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103-2108.
[10] 崔庆贺, 马琳, 周长壮, 梁金第, 宋雨键. 硅酸盐玻璃/铝合金异种材料连接综述[J]. 材料导报, 2021, 35(15): 15107-15114.
[11] 赵帆, 何颖, 张志豪. 消除7136铝合金固溶热处理粗晶环的新方法:应变固溶[J]. 材料导报, 2021, 35(14): 14079-14083.
[12] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[13] 孙茗, 庄景巍, 邓海亮, 陈子洋, 斯松华, 张瑞敏. 高温抗蠕变铝合金及铝基复合材料研究进展[J]. 材料导报, 2021, 35(11): 11137-11144.
[14] 钱国余, 王志, 孙峙, 刘春伟, 严鹏程. 废旧航空铝材涂层的热分解与成分调控再生[J]. 材料导报, 2021, 35(1): 1023-1029.
[15] 陈文娟, 龚先政, 高峰, 刘宇, 孙博学, 李小青, 王志宏. 四川氟碳铈矿生产氧化钕的环境影响分析[J]. 材料导报, 2020, 34(Z2): 315-318.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed