Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1023-1029    https://doi.org/10.11896/cldb.20070005
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用? |
废旧航空铝材涂层的热分解与成分调控再生
钱国余1, 王志1, 孙峙1, 刘春伟1, 严鹏程2
1 中国科学院过程工程研究所,湿法冶金清洁生产技术国家工程实验室,中科院绿色过程与工程重点实验室,北京 100190
2 波音(中国)投资有限公司,北京 100027
Thermal Decoating and Composition Controlled of Aerospace Aluminum Alloys
QIAN Guoyu1, WANG Zhi1, SUN Zhi1, LIU Chunwei1, YAN Pengcheng2
1 Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2 Boeing (China) Co. Ltd, Beijing 100027, China
下载:  全 文 ( PDF ) ( 6028KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 废旧航空铝合金混合废料中的无机盐涂层和合金中锌含量高是造成其绿色、高效再生利用难的主要原因,采用热重、焙烧-洗涤等手段研究了含无机盐涂层特征及热分解去除机理,利用计算、真空-电磁耦合强化等方法探究了真空-电磁场下铝合金熔体中锌(Zn)挥发去除规律,提出了焙烧-洗涤与真空-电磁强化回收废旧航空铝材的新方法。涂层特征及分解研究表明,含BaCrO4和SrCrO4等无机盐涂层热分解经历高分子有机物-烧焦物-无机薄膜的过程,无机薄膜与龟裂状铝合金表面紧密附着造成了其难以通过清水洗涤去除,通过15%稀硝酸对龟裂状表面破坏以及对无机盐的侵蚀,实现了无机盐涂层的深度去除,铝合金表面Cr、Ba和Sr等无机组分平均含量降低到0.1%以下。真空-电磁除Zn研究表明,在除Zn过程会同时去除有益元素镁(Mg),升高温度(750~900 ℃范围内)会强化Zn和Mg去除,Zn相对Mg更易去除,900 ℃下保温60 min时二者质量分数分别降低至0.03%和0.05%左右。进一步对比研究了50 Hz和200 Hz两种频率,发现200 Hz高频与高功率(10 kW)更有利于Zn的快速深度去除,Zn的去除速率在10 min内分别增加至0.28%/min (50 Hz时为0.28%/min)。以2024和7075废旧航空铝材质量比为1∶1的混合废料为对象,采用焙烧-洗涤与真空-电磁强化回收废旧航空铝材的新方法,制备出满足2024铝合金成分要求的铝合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱国余
王志
孙峙
刘春伟
严鹏程
关键词:  废旧航空铝合金  2024铝合金  无机盐涂层  真空除Zn  电磁强化  控氧熔炼精炼    
Abstract: The refractory inorganic salt coating and high zinc content in the mixed waste were the main cause of the retired aircraft of green and efficient recycling difficult. The characteristics of the coating containing inorganic salts and the thermal decomposition mechanism were studied by means of thermogrity, roasting and washing. The volatilization and removal of Zinc (Zn) from aluminum alloy melts under vacuum-electromagne-tic field were investigated by means of calculation and the coupling strengthening of vacuum-electromagnetic. A new method for recovering waste aviation aluminum materials by roasting-washing and vacuum-electromagnetic strengthening was proposed. The study of characteristics and decomposition of coating showed that the thermal decomposition of coating with BaCrO4 and SrCrO4 and other inorganic salt underwent the process of macromolecule organic matter-scorch matter-inorganic film. The inorganic film was closely attached to the cracked aluminum alloy surface, which makes it difficult to remove by washing with clean water. The deep removal of inorganic salt coating was realized by 15% dilute nitrate damage to the cracked surface and erosion to the inorganic salt, and the average content of inorganic components such as Cr, Ba and Sr on the surface of aluminum alloy decreased to less than 0.1%. The study of the vacuum-electromagnetic removing Zn showed that beneficial element magnesium (Mg) can be removed simultaneously during Zn removal. The removal of Zn and Mg was enhanced with the increase of temperature (750—900 ℃), and the degree of Zn volatilization was greater than Mg. When kept at 900 ℃ for 60 min, the content of Zn and Mg decreased to about 0.03% and 0.05% respectively. Further comparative study of 50 Hz and 200 Hz showed that the higher frequency of 200 Hz and higher power (10 kW) were more conducive to the rapid depth removal of Zn, and the removal rate of Zn increased to 0.28%/min within 10 min (0.28%/min at 50 Hz). Taking the mixed waste with the weight ratio of 2024 and 7075 used aviation aluminum as 1∶1 as the object, the new method of roasting-wash, vacuum-electromagnetic strengthening was adopted to prepare the aluminum alloy satisfying the composition requirements of 2024 aluminum alloy.
Key words:  used aerospace aluminium alloy    2024 aluminum alloy    inorganic salt coating    vacuum volatilizes Zn    electromagnetic reinforcement    controlled oxygen smelting and refining
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TF821  
基金资助: 北京市自然科学基金(2192055)
作者简介:  钱国余,中科院过程工程研究所副研究员,硕士研究生导师。主持国家重点研发计划子课题1项、国家自然科学基金重点基金项目课题1项,完成国家自然科学基金青年基金1项,完成中国博士后科学基金特别资助1项,负责多项企业横向课题。主要围绕着新能源行业锂电/光伏新兴固废能源金属高值化利用的基础研究-关键技术-工业应用的研究,主要进展及成果包括开展了新兴固废熔渣精炼除杂构效关系研究,提出了合金电渣重熔精炼与凝固偏析耦合强化杂质去除新方法,实现二次金属资源控氧熔炼精炼技术规模化应用。获中国有色金属工业科学技术一等奖(排名第四,2019年),在化工冶金领域核心期刊MMTB、ISIJ. Int、J Alloy Compd、Silicon等发表论文20余篇,其中SCI论文10篇,申请发明专利3项。
王志,中科院过程工程研究所研究员,博士生导师,资源环境绿色过程工程研究部副主任,国家自然科学优秀青年基金获得者(2014),国家重点研究计划项目负责人。获中国有色金属工业科学技术奖一等奖(2019)、中国产学研合作创新奖(2016)、北京市科技新星(2008)、中国有色金属冶金科技论文一等奖(2015,2017)等奖项。任中国有色金属学会专家委员会委员、中国硅酸盐学会专家委员会委员、北京市能源与环境学会委员、美国TMS学会会员、日本ISIJ会员等。开展有色金属战略资源循环过程精深分离、分质利用和产品高值化研究,构建了“多尺度相态设计-界面传递强化-产品构效调控-短程清洁工艺”一体化绿色技术体系。承担完成了20余项国家重点研究计划重点专项项目、国家科技支撑计划、国家自然科学基金、北京市自然科学基金以及企业合作项目。在化工冶金领域核心期刊MMTB、Hydrometallurgy、Crystal Growth & Design、Advanced Energy Materials等发表SCI论文140余篇,授权发明专利60余项。培养硕士、博士研究生30余人、博士后3名、“西部之光”访问学者2名。
引用本文:    
钱国余, 王志, 孙峙, 刘春伟, 严鹏程. 废旧航空铝材涂层的热分解与成分调控再生[J]. 材料导报, 2021, 35(1): 1023-1029.
QIAN Guoyu, WANG Zhi, SUN Zhi, LIU Chunwei, YAN Pengcheng. Thermal Decoating and Composition Controlled of Aerospace Aluminum Alloys. Materials Reports, 2021, 35(1): 1023-1029.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070005  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1023
1 http://www. afraassociation. org/.
2 http://www. afraassociation. org/news.cfm? newsid=162.
3 Menzie W D, Barry J J, Bleiwas D I, et al. The Global Flow of Aluminum From 2006 Through 2025. U.S. Geological Survey,2010.
4 Green J A S. Aluminum Recycling and Processing for Energy Conservation and Sustainability. ASM International,2007.
5 Nancy M. Energy and Environmental Profile of the U.S. Aluminum Industry. U.S. Department of Environment,1997.
6 Kvithyld A, Meskers C E M, Gaal S, et al. JOM,2008,60(8),47.
7 Lytle F W, Greegor R B, Bibbins G L, et al. Corrosion Science,1995,37(3),349.
8 Sinko J. Progress in Organic Coatings,2001,42(3-4),267.
9 Bierwagen G P, Tallman D E. Progress in Organic Coatings,2001,41(4),201.
10 Lerma J A R M, Jung I H, Broch U M E. Metallurgical and Materials Transactions B,2016,47B,1976.
11 Boeree C R. Zinc removal from aircraft aluminium-alloy scrap. Master's Thesis, Delft University of Technology, Netherlands,2011.
12 Utigard, T A. JOM,1998,50,38.
13 Zhang L. Mineral Processing and Extractive Metallurgy Review,2000,32(3),150.
14 Lerma J A M. Recycling of aerospace aluminum components into new valuable products. Ph. D. Thesis, McGill University, Montreal, QC,2016.
15 Kvithyld A, Kaczorowski J,Engh T A. TMS Annual Meeting & Exhibition, Washington,2004,pp.151.
16 Meskers C E M, Reuter M A, Boin U, et al. Metallurgical and Materials Transactions B,2008,39,500.
17 Vyazovkin S, Burnham A K, Criado J M, et al. Thermochimica Acta,2011,520(1-2),1.
18 Zhang J L. China Foundry Machinery & Technology,1996(5),51(in Chinese).
张健林.中国铸造装备与技术,1996(5),51.
19 Xu J W, Chen X H, Zhang Y. China Foundry,2003(11),66.
徐加文,陈宪宏,张毅.铸造,2003(11),66.
[1] 白庆伟,麻永林,邢淑清,冯艳飞,鲍鑫宇,陈重毅. 表面脉冲电磁场处理下7A04铝合金凝固组织演变[J]. 《材料导报》期刊社, 2018, 32(12): 2021-2027.
[2] 郑立聪, 谢克强, 刘战伟, 马文会. 一水硬铝石型高硫铝土矿脱硫研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 84-93.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed