Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11137-11144    https://doi.org/10.11896/cldb.20010128
  金属与金属基复合材料 |
高温抗蠕变铝合金及铝基复合材料研究进展
孙茗1, 庄景巍2, 邓海亮1,*, 陈子洋1, 斯松华1, 张瑞敏2
1 安徽工业大学,先进金属材料绿色制备与表面技术教育部重点实验室,马鞍山 243002;
2 深圳阿尔泰克轻合金技术有限公司,深圳 518000
Reviews on the Study of Aluminum Alloys and Aluminum Matrix Composites with High-temperature Anti-creep Behavior
SUN Ming1, ZHUANG Jingwei2, DENG Hailiang1,*, CHEN Ziyang1, SI Songhua1, ZHANG Ruimin2
1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui Univversity of Technology), Ministry of Education, Ma’anshan 243002, China;
2 Shenzhen Altech Novel Alloy Co., Ltd., Shenzhen 518000, China;
下载:  全 文 ( PDF ) ( 7350KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝合金结构或导体材料在高温环境下易发生蠕变现象,且性能随服役时间的延长而劣化,甚至发生结构破坏,导致灾难性事故的发生。因此,有效提高铝合金抗蠕变性能是其可应用于高温高载荷环境且保持优异性能的关键。目前,国内外主要通过稀土处理、合金化处理及添加增强体等方法细化铝合金晶粒,并在铝合金晶内和晶界处形成弥散分布、热稳定性高的析出相,采用细晶强化、析出强化、弥散强化、直接强化等机制钉扎晶内位错运动,抑制晶界移动,从而显著减缓铝合金的稳态蠕变速率,提升其抗蠕变性能。另外,可以通过构建蠕变性能与蠕变条件、微观结构、析出相特征之间的关系模型,预测铝合金的蠕变特性与服役寿命,为高温抗蠕变铝合金及铝基复合材料的设计提供理论依据。
本文在铝合金蠕变行为分析基础上,针对扩散蠕变、晶界滑移和位错蠕变等高温蠕变机制,从稀土微合金化、多元微合金化及复合强化等方面入手,归纳了高温抗蠕变铝合金及铝基复合材料的研究现状,揭示了高温蠕变性能的改善机制,并综述了蠕变理论模型构建及寿命预测方法的研究,同时分析了抗蠕变铝合金及铝基复合材料研究中存在的问题与发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙茗
庄景巍
邓海亮
陈子洋
斯松华
张瑞敏
关键词:  铝合金  铝基复合材料  蠕变性能  蠕变机制    
Abstract: Creep phenomenon is easily generated at high temperatures for aluminum alloys used as structural and conductor materials, which is further deteriorated with an increase of working time. Structural damage of aluminum alloys is even caused by creep, leading to a catastrophic fai-lure. Therefore, efficient improvement in the creep resistance is crucial for aluminum alloys applied in the environments with high temperatures and loads to keep their excellent properties. So far, rare earth treatment, alloying treatment, and adding of reinforcement are the methods to improve the creep resistance of aluminum alloys. The purpose is to refine alloy grains and precipitate high thermal-stability phases that are dispersed in the interior of grains and in grain boundaries. The mechanisms include fine grain strengthening, precipitation hardening, dispersion strengthening, and direct strengthening. These strengthening effects inhibit the glide of dislocations formed in crystal grains and sliding of crystal boundaries, resulting in an evident decrease of steady-state creep rate thereby improving the creep resistance. Others studies have focused on establishing the relatio-nal models between the creep properties and the creep conditions, microstructure and precipitates of aluminum alloys to predict the creep behavior and service life. The models can provide theoretical data which are favorable to the design of aluminum alloys and aluminum matrix composites showing excellent creep resistance at high temperatures.
This paper analyzes the creep behavior of aluminum alloys firstly. Focusing on the high-temperature creep mechanisms such as diffusion creep, grain boundary slip, and dislocation creep, the research progresses of anti-creep aluminum alloys and aluminum matrix composites are summarized according to the items of rare earth micro-alloying, multielement micro-alloying, and composite strengthening, etc. The improving mechanisms on high-temperature creep properties are simultaneously revealed. The studies on the establishment of creep theoretical models and prediction of creep life are also reviewed. The challenges and developments of anti-creep aluminum alloys and aluminum matrix composites are finally proposed basing on the above reviews.
Key words:  Aluminum alloy    Aluminum matrix composites    creep behavior    creep mechanism
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TB31  
基金资助: 国家自然科学基金资助项目(51972002); 装备预研基金资助项目(JZX7Y20190262004901)
通讯作者:  *dhl221@126.com   
作者简介:  孙茗,2018年6月毕业于河北工程大学,获得工学学士学位。现为安徽工业大学材料科学与工程学院硕士研究生,在邓海亮教授的指导下进行研究。目前主要研究领域为铝基复合材料。邓海亮,安徽工业大学材料科学与工程学院教授、博士研究生导师。2012年5月在西北工业大学材料学专业取得博士学位,2012—2017年在西安航天复合材料研究所从事超高温复合材料及其航空航天应用研究。主要研究领域为复合材料。近年来,在复合材料领域发表论文40余篇,包括Carbon、Materials Science and Engineering A、Journal of the European Ceramic Society、Tribology International、Wear和《新型炭材料》等。
引用本文:    
孙茗, 庄景巍, 邓海亮, 陈子洋, 斯松华, 张瑞敏. 高温抗蠕变铝合金及铝基复合材料研究进展[J]. 材料导报, 2021, 35(11): 11137-11144.
SUN Ming, ZHUANG Jingwei, DENG Hailiang, CHEN Ziyang, SI Songhua, ZHANG Ruimin. Reviews on the Study of Aluminum Alloys and Aluminum Matrix Composites with High-temperature Anti-creep Behavior. Materials Reports, 2021, 35(11): 11137-11144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010128  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11137
1 Zhang S Q, Zhang Y C, Chen M, et al. Applied Mathematics and Mechanics,2018,39(7),967.
2 Liu X Y, Zhao X C, Yang X R, et al. Chinese Journal of Rare Metals,2016,40(12),1282(in Chinese).
刘晓燕,赵西成,杨西荣,等.稀有金属,2016,40(12),1282.
3 Wen X, Liao H M, Zeng M. Transactions of Materials and Heat Treatment,2014,35(11),97(in Chinese).
魏鑫,廖慧敏,曾明.材料热处理学报,2014,35(11),97.
4 Lin Y C, Liu G, Chen M S, et al. Materials and Design,2015,79,127.
5 Jiang X Y, Zhang Y, Yi D Q, et al. Materials Characterization,2017,130,181.
6 Milligan B K, Roy S, Hawkins C S, et al. Materials Science and Engineering A,2020,772,138697.
7 Chao Z L, Zhang L C, Jiang L T, et al. Journal of Alloys and Compounds,2019,775,290.
8 Wei D, Yang K, Zhang P, et al. Journal of Materials Engineering and Performance,2019,28(6),3614.
9 Yang C, Cao L F, Gao Y H, et al. Materials and Design,2020,186,108309.
10 Spigarelli S, Sandstrom R. Materials Science and Engineering A,2018,711,343.
11 Sun R, Qing Y, Zhuang J W, et al. Light Alloy Fabrication Technology,2019,47(2),13(in Chinese).
孙睿,庆毅,庄景巍,等.轻合金加工技术,2019,47(2),13.
12 Christopher B M, Seidman D N, Dunand D C. Acta Materialia,2012,60(8),3643.
13 Ravindran S, Mani D N, Balaji S, et al. Materials Today: Proceedings,2019,16,1020.
14 Nami B, MiresmaeiliI S M, Jamshidi F, et al. Transactions of Nonferrous Metals Society of China,2019,29,2056.
15 PaninaV E, Surikova N S, Elsukova T F, et al. Materials Science and Engineering A,2018,733,276.
16 Zhang J Y, Wang B, Wang H, et al. Materials Characterization,2020,159,110024.
17 Dar S M, Liao H C. Materials Science and Engineering A,2019,763,138062.
18 Lin Q Q,Wang J H. Special Casting and Nonferrous Alloys,2005,25(6),381(in Chinese).
林启权,王建华.特种铸造及有色合金,2005,25(6),381.
19 Gao Y H, Cao L F, Yang C. Materials Today Nano,2019,6,1.
20 Rao K S, Raju P N, Reddy G M, et al. Materials Science and Technology,2009,25(1),92.
21 Zupanic F, Gspanb C, Burja J, et al. Materials Today Communications,2020,22,100809.
22 Yue S, Deng X B, Zhang J X, et al. Transactions of Materials and Heat Treatment,2017,38(9),36(in Chinese).
岳嵩,邓显波,张嘉艺,等.材料热处理学报,2017,38(9),36.
23 Starink M J, Gao N, Kamp N, et al. Materials Science and Engineering A,2006,418(1?2),241.
24 Chen Z G, Yang W L, Wang S Y, et al. Rare Metal Materials and Engineering,2010,39(8),1499(in Chinese).
陈志国,杨文玲,王诗勇,等.稀有金属材料与工程,2010,39(8),1499.
25 Wen S P, Xing Z B, Huang H, et al. Materials Science and Engineering A,2009,516(1?2),42.
26 Zhang J X, Gao A H. Hot Working Technology,2012,41(2),58(in Chinese).
张建新,高爱华.热加工工艺,2012,41(2),58.
27 Wang W T, Zhang X M, Gao Z G, et al. Journal of Alloys and Compounds,2010,491(1?2),366.
28 Jaukovic N, Asanovic V, Radovic Z. High Temperature Materials and Processes,2011,30,599.
29 Bai Z, Qiu F, Wu X, et al. Materials Characterization,2013,86,185.
30 Farkoosh A R, Pekguleryuz M. Materials Science and Engineering A,2013,582,248.
31 Li G F, Zhang X M, Zhu H F, Journal of Aeronautical Materials,2010,30(6),1(in Chinese).
李国锋,张新明,朱航飞.航空材料学报,2010,30(6),1.
32 Luca A D, Dunand D C. Acta Materialia,2018,144,80.
33 Nhon Q V, David N. Materials Science and Engineering A,2018,734,27.
34 Li Z, Zhang Z. Materials Science and Engineering A,2018,729,196.
35 Knipling K E, Karnesky R A, Lee C P, et al. Acta Materialia,2010,58(15),5184.
36 Zhang X D, Wang S Q. Acta Metallurgica Sinica,2013,29(4),501(in Chinese).
张旭东,王绍青.金属学报,2013,29(4),501.
37 Wang G J, Xiong B Q, Zhang Y A, et al. Rare Metals,2011,30(3),310.
38 Rutecka A, Kowalewski Z L, Pietrzak K, et al. Procedia Engineering,2011,10,1420.
39 Sharmilee Pal, Ray K K, Mitra R. Materials Science and Engineering A,2010,527(26),6831.
40 Huang M H, Wang H W, Li X F, et al. Rare Metal Materials And Engineering,2005,34(9),1394.
41 Ji F, Ma M Z, Song A J, et al. Materials Science and Engineering A,2009,506(1?2),58.
42 Tian W S, Zhao Q L, Geng R, et al. Materials Science and Engineering A,2018,713,190.
43 Liu X R, Guo Y C, Xia F, et al. Hot Working Technology,2019,48(8),123(in Chinese).
刘晓蓉,郭永春,夏峰,等.热加工工艺,2019,48(8),123.
44 Zuo D Q, Ma G L, Deng Z H, et al. Chinese Journal of Applied Mecha?nics,2018,35(4),894(in Chinese).
左都全,马国玲,邓正华,等.应用力学学报,2018,35(4),894.
45 Lin Y C, Xia Y C, Chen M S, et al. Computational Materials Science,2013,67,243.
46 Lin Y C, Jiang Y Q, Zhou H M, et al. Journal of Materials Engineering and Performance,2014,23(12),4350.
47 Shivakumar S P, Sharan A S, Sadashivappa K. Materials Science and Engineering A,2018,310,12.
48 Deng Y L, Zhang S, Wang Y, et al. Hot Working Technology,2018,47(10),1(in Chinese).
邓运来,张书,王宇,等.热加工工艺,2018,47(10),1.
49 Lv F G, Huang X, Zeng Y S, et al. Materials Science and Technology,2014(3),28(in Chinese).
吕凤工,黄遐,曾元松,等.材料科学与工艺,2014(3),28.
50 Li L T, Lin Y C, Zhou H M, et al. Computational Materials Science,2013,73(6),72.
51 Zhang J, Deng Y, Zhang X. Materials Science and Engineering A,2013,563,8.
52 Li C, Wu X D, Huang L. Materials Science and Engineering A,2010,527,3623.
[1] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[2] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[3] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[4] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[5] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[6] 朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
[7] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[8] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[9] 丁亚茹, 陈芙蓉, 杨帆, 贾翠玲. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103-2108.
[10] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[11] 钱国余, 王志, 孙峙, 刘春伟, 严鹏程. 废旧航空铝材涂层的热分解与成分调控再生[J]. 材料导报, 2021, 35(1): 1023-1029.
[12] 晁代义, 于芳, 李红萍, 高振文, 张倩, 吕正风, 程仁策. 均匀化工艺对大尺寸7075铝合金组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 362-364.
[13] 陈志强, 贾锦玉, 胡文鑫, 王玮, 刘峰. 铝合金稀土复合细化剂的研究进展[J]. 材料导报, 2020, 34(Z2): 365-370.
[14] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[15] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed