Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9028-9032    https://doi.org/10.11896/cldb.21020043
  轻质合金 |
Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析
张鹏居, 钱钊*, 刘相法
山东大学材料液固结构演变与加工教育部重点实验室,济南 250061
Effect of Al-B-C Master Alloy on the Thermal Conductivity and Mechanical Property of 6201 Aluminum Alloy and Its Mechanism Analysis
ZHANG Pengju, QIAN Zhao*, LIU Xiangfa
Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
下载:  全 文 ( PDF ) ( 7501KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 6xxx系Al-Mg-Si合金具有较高的载流子迁移率、热导率以及较高的力学性能,可应用于电力电子设备、散热器、导体材料等,拥有广阔的发展前景。为保证器件及设备高效稳定运转,提高相关材料的散热性能是目前迫切需要解决的关键问题之一。以6201铝合金为研究对象,通过添加Al-B-C晶种合金引入Al3BC粒子及AlB2相,将硼化处理与第二相强化相结合促使合金导热性能与强度同时提升;同时,对材料的微观组织、晶粒尺寸及断口形貌进行了分析表征。通过该方法使得材料热导率提升至210.02 W/(m·K),相比原始合金提升了22.5%。200 ℃下材料的屈服强度、抗拉强度分别提升至245 MPa、250 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏居
钱钊
刘相法
关键词:  6201铝合金  Al-B-C晶种  热导率  强度    
Abstract: The 6xxx series Al-Mg-Si alloys have properties such as relatively high carrier mobility, high thermal conductivity, and higher mechanical pro-perties. It have broad development prospects and can be applied in electric equipment, heat sink, conductive materials, etc. In order to ensure the rapid and efficient operation of the equipment, improving the heat-conducting performance of the material is an urgent problem to be solved for industry. In this work, the 6201 aluminum alloy was investigated. The Al-B-C master alloy was added into the 6201 alloy to introduce Al3BC and AlB2 particles, and the combination of boron-treatment and secondary-phase strengthening promoted the simultaneous improvement of thermal conductivity and strength of the material. The microstructure, grain size and fracture morphology of the materials were characterized and analyzed. Through this method, the thermal conductivity of 6201 alloy was increased to 210.02 W/(m·K), which was by 22.5% higher than the pristine material. The yield strength and tensile strength were increased to 245 MPa and 250 MPa respectively at 200 ℃.
Key words:  6201 aluminum alloy    Al-B-C master alloy    thermal conductivity    strength
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TG146.2  
基金资助: 山东省自然科学基金项目(ZR2018MEM001);国家自然科学基金重点项目(51731007);山东大学“未来计划”青年学者项目
通讯作者:  qianzhao@sdu.edu.cn   
作者简介:  钱钊,现任山东大学副教授。2013年博士毕业于瑞典皇家理工学院,2014年至今工作于山东大学材料科学与工程学院,主要从事轻金属基材料与结构功能一体化的理论计算及实验研究。
张鹏居,2018年毕业于武汉理工大学,获得工学学士学位。于2018年9月至2021年6月在山东大学材料科学与工程学院学习,主要从事6201铝合金的导电、导热及力学性能研究工作。
引用本文:    
张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
ZHANG Pengju, QIAN Zhao, LIU Xiangfa. Effect of Al-B-C Master Alloy on the Thermal Conductivity and Mechanical Property of 6201 Aluminum Alloy and Its Mechanism Analysis. Materials Reports, 2021, 35(9): 9028-9032.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020043  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9028
1 Wu M W, Hua L, Zhou J X, et al. Materials Reports A: Review Papers,2018,32(5),1486(in Chinese).
吴孟武,华林,周建新,等.材料导报:综述篇,2018,32(5),1486.
2 Huang Y Y, Hu Z L, Wang J J. Applied Mechanics and Materials,2014,574,396.
3 Wang H, Li Y D, Luo X M, et al. Foundry,2019,68(10),1104(in Chinese).
王慧,李元东,罗晓梅,等.铸造,2019,68(10),1104.
4 Yuan W H, Liang Z Y, Zhang C Y, et al. Materials & Design,2012,34,788.
5 Niu Y P, Zhao Y K, Wang S C, et al. Foundry,2016,65(4),366(in Chinese).
牛艳萍,赵禹凯,王顺成,等.铸造,2016,65(4),366.
6 Flores F U, Seidman D N, Dunand D C, et al. In: TMS 2018 Annual Meeting & Exhibition. Phoenix, Arizona, USA,2018.
7 Rossiter P L, Bass J. Physics Today,1988,41(6),78.
8 Valiev R Z, Murashkin M Y,Sabirov I. Scripta Materialia,2014,76,13.
9 Qian Z, Guo W M, Jiang G Z, et al. Metals,2017,7(11),489.
10 Zhao Q R, Qian Z, Cui X L, et al. Journal of Alloys and Compounds,2015,650,768.
11 Zhao Q R, Qian Z, Cui X L, et al. Journal of Alloys and Compounds,2016,666,50.
12 Zhang J Y, Ma M Y, Shen F H, et al. Materials Science and Enginee-ring: A,2018,710,27.
13 Cubero-Sesin J M, Arita M, Horita Z. Advanced Engineering Materials,2015,17(12),1792.
14 Karabay S. Materials & Design,2008,29(7),1364.
15 Chen D B, Xu F S, Wang R L, et al. Light Alloy Fabrication Technology,2009,37(6),33.
16 Khaliq A, Rhamdhani M A, Batul R. Microscopy and Microanalysis,2018,24(S1),2272.
17 Khaliq A, Rhamdhani M A, Brooks G A, et al. Metallurgical and Mate-rials Transactions B,2014,45(2),784.
18 Yang H B, Qian Z, Zhang G J, et al. Journal of Alloys & Compounds,2017,731,774.
19 Zhao Y F, Qian Z, Ma X, et al. ACS Applied Materials & Interfaces,2016,8(41),28194.
[1] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[2] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[3] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[4] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[5] 李东宇, 李小强, 李京懋, 屈盛官, 徐各清. 烧结工艺对铜铁基含油轴承组织与性能的影响[J]. 材料导报, 2021, 35(8): 8157-8163.
[6] 石玉, 李正宁, 盛捷, 喇培清. 纳米高强钢铁材料增塑研究进展[J]. 材料导报, 2021, 35(7): 7155-7161.
[7] 王凯伟, 曾凯, 刑保英, 易金权. DP780高强钢胶接点焊过程声发射信号特征及接头强度预测[J]. 材料导报, 2021, 35(6): 6157-6160.
[8] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[9] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[10] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[11] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[12] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[13] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[14] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[15] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed