Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9016-9027    https://doi.org/10.11896/cldb.20030207
  轻质合金 |
含Gd的Mg-Al系合金研究现状
钟诗宇1,2, 张丁非1,2,*, 胥钧耀1,2, 赵阳1,2, 冯靖凯1,2, 蒋斌1,2, 潘复生1,2, 杨静波3
1 重庆大学材料科学与工程学院,重庆 400045
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
3 河钢集团钢研总院,石家庄 050023
Research Progress of Mg-Al Based Alloys Containing Gd Element
ZHONG Shiyu1,2, ZHANG Dingfei1,2,*, XU Junyao1,2, ZHAO Yang1,2, FENG Jingkai1,2, JIANG Bin1,2,
PAN Fusheng1,2, YANG Jingbo3
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
3 HBIS Group Technology Research Institute, Shijiazhuang 050023, China
下载:  全 文 ( PDF ) ( 15548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金作为“21世纪绿色环保工程材料”,具有广阔的应用前景。在诸多类型的镁合金中,Mg-Al系合金是目前应用范围最广、牌号最多的镁合金。合金化一直是改善镁合金性能的重要手段,在围绕Mg-Al系合金开展的众多合金化研究中,加入稀土元素Gd是一个重要的研究方向。
近年来,许多研究者围绕微观形貌、力学性能与腐蚀行为三个方面对含Gd的Mg-Al系合金广泛开展了研究。在Mg-Al系合金中加入Gd后,合金第二相的种类与结构会发生相应的变化。其中,最常见的变化为脆性第二相Mg17Al12转换为高硬度第二相Al2Gd。Al2Gd在合金凝固时可作为非均质形核点,使合金的晶粒尺寸得到明显的细化,力学性能也得到提高(细晶强化)。此外,Al2Gd作为热稳定相,在随后的热处理及热加工过程中,不会发生回溶或分解,因此其可以钉扎晶界,抑制晶粒异常长大。2011年有学者首次在含Gd的Mg-Al系合金中发现了LPSO相,但相比于Mg-Zn合金,目前Mg-Al系合金中关于LPSO的研究还比较少,LPSO相的潜力还未得到充分发挥。一般而言,Gd可提升铸态Mg-Al系合金的力学性能,但其对热处理态及热挤压态Mg-Al系合金力学性能的影响更为复杂,还需进一步探究。腐蚀行为方面,加入Gd不仅可以减少Mg-Al系合金晶界处Cu、Fe、Ni等有害杂质元素的偏析,抑制有害杂质元素带来的腐蚀,还可以使腐蚀产物膜更加稳定、致密,从而减缓腐蚀。当然,加入Gd后,Mg-Al系合金第二相的成分、含量、形态及分布发生了改变,导致第二相与基体相的电位差、第二相起到屏蔽腐蚀离子的作用发生改变,也会使合金的腐蚀行为发生相应变化。
本文综述了国内外含Gd的Mg-Al系合金的研究现状,介绍了Gd对Mg-Al系合金微观形貌、力学性能和腐蚀行为的影响,并分析了目前研究的不足,最后展望了含Gd的Mg-Al系合金的研究趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟诗宇
张丁非
胥钧耀
赵阳
冯靖凯
蒋斌
潘复生
杨静波
关键词:  Mg-Al系合金  Gd  微观形貌  力学性能  腐蚀行为    
Abstract: As an environmentally friendly engineering material in the 21st century, magnesium alloys show a great application prospect. Among various magnesium alloys, Mg-Al based magnesium alloys are the most widely used at present. Alloying has always been a significant method to improve the properties of magnesium alloys. In many studies about Mg-Al based alloys, the addition of rare earth element Gd is an important research direction.
In recent years, many researchers have carried out extensive studies on the microstructure, mechanical properties and corrosion behavior of Mg-Al-Gd alloys. In fact, when Gd is added to Mg-Al based alloys, the type and structure of the second phase would change with different Gd content. The most common one is the transformation from brittle second phase Mg17Al12 to high hardness second phase Al2Gd. The latter could act as a heterogeneous nucleation point during solidification. Additionally, it is thermally stable and would not dissolve or decompose in the subsequent heat treatment and hot working process. In other words, Al2Gd could increase the nucleation rate, pin the grain boundary and restrain the abnormal grain growth. As a result, the grain size of the alloy is obviously refined and the mechanical properties are improved (fine grain strengt-hening). In 2011, some scholars found LPSO phase in Mg-Al based alloys containing Gd for the first time. However, compared with Mg-Zn alloy, the research on LPSO in Mg-Al based alloys is still relatively rare, and the strengthening effect of LPSO phase has not been fully utilized. Generally, Gd can improve the mechanical properties of as-cast Mg-Al based alloys. But its effect on those of Mg-Al based alloys which subjected to heat treatment and/or hot deformation are more complex. Hence, further works are supposed to be carried out. In terms of corrosion behavior, the addition of Gd can reduce the segregation of harmful impurity elements such as Cu, Fe, Ni at the grain boundary. Besides, a much denser corrosion film could be achieved by adding Gd. Furthermore, the composition, content, morphology and distribution of the second phase are modified with Gd addition, leading to the change of potential difference between the second phase and the substrate, and the variation of shielding effect of the second phase. As a result, the corrosion behavior of the alloy is affected.
In this paper, the research progress of Mg-Al based alloy containing Gd at home and abroad is reviewed. The effects of Gd on the microstructure, mechanical properties and corrosion behavior of Mg-Al based alloys are introduced, and the shortcomings of the current research are analyzed. Finally, the research trend of Mg-Al based alloys containing Gd is prospected.
Key words:  Mg-Al based alloys    Gd    microstructure    mechanical properties    corrosion behavior
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TG146.2  
基金资助: 国家重点研发计划项目(2016YFB0301101);国家自然科学基金重点项目(U1764253)
通讯作者:  zhangdingfei@cqu.edu.cn   
作者简介:  钟诗宇,2019年6月毕业于西南石油大学,获得工学学士学位。现为重庆大学材料科学与工程学院硕士研究生,在张丁非教授的指导下进行研究。目前主要研究方向为镁合金新材料。
张丁非,教授,博士研究生导师,主要从事轻合金材料及加工技术研究。1984年本科毕业于浙江大学材料系,1987年获浙江大学工学硕士学位,1997年博士毕业于重庆大学材料学院。2003年美国康涅狄格大学公派访问学者,副教授。曾获教育部技术发明一等奖,重庆市科技进步一等奖,重庆市自然科学三等奖,累积发表论文300余篇,现为重庆大学国家镁合金材料工程技术研究中心副主任。
引用本文:    
钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
ZHONG Shiyu, ZHANG Dingfei, XU Junyao, ZHAO Yang, FENG Jingkai, JIANG Bin,
PAN Fusheng, YANG Jingbo. Research Progress of Mg-Al Based Alloys Containing Gd Element. Materials Reports, 2021, 35(9): 9016-9027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030207  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9016
1 Peng P, Tang A T, She J, et al. Materials Review A: Review Papers,2019,33(5),1526(in Chinese).
彭鹏,汤爱涛,佘加,等.材料导报:综述篇,2019,33(5),1526.
2 Chen Y, Wu Z, Wang J H. Materials Review,2015,29(S1),433(in Chinese).
陈阳,吴震,王金辉.材料导报,2015,29(专辑25),433.
3 Xu C, Zhang J H, Liu S J, et al. Materials & Design,2015,79,53.
4 Xu Z C, Wang D, Shi Q N. Hot Working Technology,2017,46(10),10(in Chinese).
徐志超,王迪,史庆南.热加工工艺,2017,46(10),10.
5 Zhang D F, Zhang H J, Lan W, et al. Transactions of Materials and Heat Treatment,2012,33(6),1(in Chinese).
张丁非,张红菊,兰伟,等.材料热处理学报,2012,33(6),1.
6 Zhang J H, Liu S J, Wu R Z, et al. Journal of Magnesium and Alloys,2018,6(3),277.
7 Zhang D F, Chen X, Pan F S, et al. Journal of Functional Materials,2014,45(5),5001(in Chinese).
张丁非,谌夏,潘复生,等.功能材料,2014,45(5),5001.
8 Wang F H, Du K Q, Zhang W. Materials China,2011,30(2),29.
9 Wu Y J, Ding W J, Peng L M, et al. Materials China,2011,30(2),1(in Chinese).
吴玉娟,丁文江,彭立明,等.中国材料进展,2011,30(2),1.
10 Liu B Z, Fan Y P, Liu J J, et al. Materials Review A: Review Papers,2012,26(6),110(in Chinese).
刘宝忠,范燕平,刘娇娇,等.材料导报:综述篇,2012,26(6),110.
11 Rokhlin L L. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, CRC Press, London,2003.
12 Raghavan V. Journal of Phase Equilibria and Diffusion,2007,28(5),464.
13 Dai J, Easton M, Zhu S, et al. Journal of Materials Research,2012,27(21),2790.
14 Wang X D, Du W B, Liu K, et al. Journal of Alloys and Compounds,2012,522,78.
15 Zhang J L, Liu Y L, Liu J, et al. Journal of Alloys and Compounds,2016,663,610.
16 Pourbahari B, Emamy M, Mirzadeh H. Progress in Natural Science: Materials International,2017,27(2),228.
17 Pourbahari B, Mirzadeh H, Emamy M. Materials Science and Enginee-ring: A,2017,680,39.
18 Roostaei M, Parsa M H, Mahmudi R, et al. Journal of Alloys and Compounds,2015,631,1.
19 Stanford N, Atwell D, Barnett M R. Acta Materialia,2010,58(20),6773.
20 Li W P, Zhou H, Li Z F. Journal of Alloys and Compounds,2009,475(1-2),227.
21 Li D, Chen Y L, Hu S P, et al. Chinese Journal of Materials Research,2014,28(8),579(in Chinese).
李栋,陈雨来,胡水平,等.材料研究学报,2014,28(8),579.
22 Wang J S, Li X B. Journal of Alloys and Compounds,2019,803,689.
23 Cui Z Q, Qin Y C. Metallography and heat treatment, Machinery Industry Press, China,2007(in Chinese).
崔忠圻,覃耀春.金属学与热处理,机械工业出版社,2007.
24 Greer A L, Bunn A M, Tronche A, et al. Acta Materialia,2000,48(11),2823.
25 Quested T E, Greer A L. Acta Materialia,2004,52(13),3859.
26 Chang H W, Qiu D, Taylor J A, et al. Journal of Magnesium and Alloys,2013,1(2),115.
27 Jiang B, Liu W J, Qiu D, et al. Materials Chemistry and Physics,2012,133(2),611.
28 Sun M, Hu X Y, Peng L M, et al. Materials Science and Engineering: A,2015,620,89.
29 Han M X, Zhu X Z, Gao T, et al. Journal of Alloys and Compounds,2017,705,14.
30 Wang Y, Xia M, Fan Z, et al. Intermetallics,2010,18(8),1683.
31 Bramfitt B L. Metallurgical Transactions,1970,1(7),1987.
32 Liu Y L, Zhang J L, Liu J, et al. Transactions of Materials and Heat Treatment,2016,37(6),49(in Chinese).
刘阳力,张金玲,刘军,等.材料热处理学报,2016,37(6),49.
33 Lu F M, Ma A B, Jiang J H, et al. Corrosion Science,2015,94,171.
34 Pourbahari B, Mirzadeh H, Emamy M. Journal of Materials Research,2017,32(22),4186.
35 Nie J F. Metallurgical and Materials Transactions A,2012,43(11),3891.
36 Humphreys F J. Acta Metallurgica,1977,25(11),1323.
37 Pourbahari B, Mirzadeh H, Emamy M. Journal of Materials Engineering and Performance,2018,27(3),1327.
38 Pourbahari B, Mirzadeh H, Emamy M, et al. Advanced Engineering Materials,2018,20(8),1701171.
39 Kawamura Y, Hayashi K, Inoue A, et al. Materials Transactions,2001,42(7),1172.
40 Kimizuka H, Fronzi M, Ogata S. Scripta Materialia,2013,69(8),594.
41 Meng L G. Researches on formation mechanism of the LPSO structure, microstructures and mechanical properties of the Mg-Gd-Y-Zn-Zr alloys. Ph.D. Thesis, Dalian University of Technology, China,2014(in Chinese).
孟令刚.Mg-Gd-Y-Zn-Zr合金长周期结构形成机制与组织性能研究.博士学位论文,大连理工大学,2014.
42 Saal J E, Wolverton C. Acta Materialia,2014,68,325.
43 Hagihara K, Okamoto T, Izuno H, et al. Acta Materialia,2016,109,90.
44 Liu C, Zhu Y, Luo Q, et al. Journal of Materials Science & Technology,2018,34(12),2235.
45 Garcés G, Oñorbe E, Dobes F, et al. Materials Science and Enginee-ring: A,2012,539,48.
46 Cai Q, Zhai C, Luo Q, et al. Materials Characterization,2019,154,233.
47 Yokobayashi H, Kishida K, Inui H, et al. Acta Materialia,2011,59(19),7287.
48 Mi S B, Jin Q Q. Scripta Materialia,2013,68(8),635.
49 Li Z L, Liu F, Yuan A P, et al. Journal of Materials Science & Technology,2017,33(7),630.
50 Kishida K, Yokobayashi H, Inui H, et al. Intermetallics,2012,31,55.
51 Kishida K, Yokobayashi H, Inui H. Philosophical Magazine,2013,93(21),2826.
52 Kishida K, Inoue A, Yokobayashi H, et al. Scripta Materialia,2014,89,25.
53 Gu X F, Furuhara T, Chen L, et al. Scripta Materialia,2018,150,45.
54 Yang Q, Guan K, Li B S, et al. Journal of Alloys and Compounds,2018,766,902.
55 Geng Z W, Xiao D H, Chen L. Journal of Alloys and Compounds,2016,686,145.
56 Athul K R, Srinivasan A, Pillai U T S. Journal of Materials Research,2017,32(19),3732.
57 Stanford N, Sabirov I, Sha G, et al. Metallurgical and Materials Transactions A,2010,41(3),734.
58 Huang S. Study of the composite strengthening and toughening mechanism of high-strength Mg-RE-TM alloys with LPSO phase and precipitation hardening phase. Ph.D. Thesis, Chongqing University, China,2016(in Chinese).
黄崧.高性能Mg-RE-TM系镁合金中LPSO相和沉淀硬化相的复合强韧化研究.博士学位论文,重庆大学,2016.
59 Bi G L, Han Y X, Jiang J, et al. Materials Science and Engineering: A,2019,760,246.
60 Li X, Mao P L, Wang F, et al. Materials Reviews A: Review Papers,2019,33(4),1182(in Chinese).
李响,毛萍莉,王峰,等.材料导报:综述篇,2019,33(4),1182.
61 Tahreen N, Chen D L. Advanced Engineering Materials,2016,18(12),1983.
62 Wang C, Ma A B, Liu H, et al. Materials Reviews A: Review Papers,2019,33(10),3298(in Chinese).
王策,马爱斌,刘欢,等.材料导报:综述篇,2019,33(10),3298.
63 Li J C, He Z L, Fu P H, et al. Materials Science and Engineering: A,2016,651,745.
64 Zhen R, Sun Y S, Xue F, et al. Journal of Alloys and Compounds,2013,550,273.
65 Zhang J S, Zhang W B, Bian L P, et al. Materials Science and Enginee-ring: A,2013,585,268.
66 Wang J F, Song P F, Huang S, et al. Materials Letters,2013,93,415.
67 Wang J F, Song P F, Zhou X E, et al. Materials Science and Enginee-ring: A,2012,556,68.
68 Yang Y Z, Yang D J. Corrosion and corrosion control principle, China Petrochemical Press, China,2014(in Chinese).
杨玉珍,杨德钧.腐蚀和腐蚀控制原理,中国石化出版社,2014.
69 Gao Z H. Surface Technology,2016,45(3),169.
70 Zuo Y, Xiong J P. Engineering materials and corrosion resistance, China Petrochemical Press, China,2018(in Chinese).
左禹,熊金平.工程材料及耐蚀性,中国石化出版社,2018.
71 Atrens A, Song G L, Liu M, et al. Advanced Engineering Materials,2015,17(4),400.
72 Zhang X, Zhang K. Corrosion Science and Protection Technology,2015,27(1),78(in Chinese).
张新,张奎.腐蚀科学与防护技术,2015,27(1),78.
73 Song G L, Atrensa A, Dargusch M. Corrosion Science,1999,41(2),249.
74 Pardo A, Merino M C, Coy A E, et al. Corrosion Science,2008,50(3),823.
75 Arrabal R, Pardo A, Merino M C, et al. Materials and Corrosion,2011,62(4),326.
76 Arrabal R, Matykina E, Pardo A, et al. Corrosion Science,2012,55,351.
77 Bai L J, Zhang H, Yuan Y, et al. Journal of Xi'an University of Techno-logy,2011,27(1),31(in Chinese).
白力静,张华,袁颖,等.西安理工大学学报,2011,27(1),31.
78 Song G L. Corrosion electrochemistry of magnesium (Mg) and its alloys, Woodhead Publishing,2011.
79 Liu J, Zhang J L, Qu Z B, et al. Journal of Materials Engineering,2018,46(6),73(in Chinese).
刘军,张金玲,渠治波,等.材料工程,2018,46(6),73.
80 Chen J, Zhang Q. Materials Protection,2019,52(3),35(in Chinese).
陈君,张清.材料保护,2019,52(3),35.
81 Yang M, Zhang Z Y, Liu Y H, et al. Open Physics,2016,14(1),444.
82 Yang M, Liu X B, Zhang Z Y, et al. Open Physics,2019,17(1),373.
83 Yang M, Liu X B, Zhang Z Y, et al. Metals,2019,9(5),616.
84 Yang M, Liu Y H, Liu J A, et al. Journal of Rare Earths,2014,32(6),558.
85 Yang M. Study on the corrosion and mechanical properties of AM50 magnesium alloy. Ph.D. Thesis, Jilin University, China,2014(in Chinese).
杨淼.AM50镁合金腐蚀力学性能研究.博士学位论文,吉林大学,2014.
86 Song Y L. Microstructure and corrosion resistance of AZ91 magnesium alloy modified by rare earth. Ph.D. Thesis, Jilin University, China,2006(in Chinese).
宋雨来.稀土改性AZ91镁合金组织及腐蚀性能.博士学位论文,吉林大学,2006.
87 Song Y L, Liu Y H, Wang S H, et al. Materials and Corrosion,2007,58(3),189.
88 Peng Xiaodong, Li Junchen, Li Wenjuan, et al. Rare Metal Materials and Engineering,2013,42(10),1993.
89 Jiao Y F, Zhang J H, He L L, et al. Advanced Engineering Materials,2016,18(1),148.
90 Song D, Ma A B, Jiang J H, et al. Corrosion Science,2011,53(1),362.
91 Birbilis N, Williams G, Gusieva K, et al. Electrochemistry Communications,2013,34,295.
92 Chen L, Zhang X M, Liu F, et al. Journal of Chongqing Technology and Business University (Natural Science Edition),2017,34(1),75(in Chinese).
陈凌,张贤明,刘飞,等.重庆工商大学学报(自然科学版),2017,34(1),75.
93 Neil W C, Forsyth M, Howlett P C, et al. Corrosion Science,2011,53(10),3299.
94 Mccafferty E. Corrosion Science,2005,47(12),3202.
[1] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[2] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[3] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[4] 关海昆, 李全安, 陈晓亚, 张帅, 王颂博. Mg-11Gd-2Y-1.5Ag-0.5Zr合金的高温蠕变行为[J]. 材料导报, 2021, 35(6): 6126-6130.
[5] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[6] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[7] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[8] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[9] 王健, 杜国正, 张永, 武政, 高靖, 苏力德. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 4177-4180.
[10] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[11] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[12] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[13] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[14] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[15] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed