Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4177-4180    https://doi.org/10.11896/cldb.20060234
  金属与金属基复合材料 |
运行状态下风力机叶片涂层沙蚀磨损研究
王健1, 杜国正1, 张永1, 武政2, 高靖3, 苏力德1
1 内蒙古农业大学机电工程学院,呼和浩特 010018
2 中国铁路呼和浩特局集团公司车辆部,呼和浩特 010053
3 内蒙机械动力研究所,呼和浩特 010010
Research on Sand Erosion Wear of Wind Turbine Blade Coating in Operation State
WANG Jian1, DU Guozheng1, ZHANG Yong1, WU Zheng2, GAO Jing3, SU Lide1
1 College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2 Vehicle Department of China Railway Hohhot Group Co., Ltd., Hohhot 010053, China
3 Inner Mongolia Institute of Mechanical Power, Hohhot 010010, China
下载:  全 文 ( PDF ) ( 3769KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过对运行状态下的1.5 MW风力机叶片缩微模型进行冲蚀磨损试验,模拟真实运行状态下风力机叶片涂层的冲蚀磨损过程,研究不同叶轮转速、叶片分区、沙粒粒径对叶片涂层冲蚀磨损量的影响,分析叶尖前缘和近后缘处表面磨损的微观形貌,明确了运行状态下风力机叶片与沙粒之间的相互作用方式及冲蚀磨损机理。运行状态下,风力机叶片涂层冲蚀磨损进程特征依次为麻面、冲蚀坑、冲蚀坑合并、涂层小块剥落和涂层大面积剥落。不同叶轮转速下叶片涂层的冲蚀磨损量虽存在差异,但冲蚀磨损进程有着较高的相似性,可将整个过程分为磨损孕育期、快速磨损期和缓慢磨损期。随着冲蚀区域与叶根距离的增大,叶片涂层的冲蚀磨损量不断增大。不同粒径沙粒冲击叶片涂层,冲蚀磨损进程总体趋势相似,但粒径越小,冲蚀磨损进程的发展越缓慢。沙粒冲蚀前缘处的相对运动可近似为垂直冲击,冲蚀磨损特征主要为近圆形冲蚀坑及横向裂纹扩展下的涂层脱落;冲击近后缘处时,冲蚀磨损程度明显低于前缘处,冲蚀磨损形式主要为凹形压痕及鳞片状薄片脱落。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王健
杜国正
张永
武政
高靖
苏力德
关键词:  风力机叶片  运行状态  沙蚀磨损  微观形貌    
Abstract: The erosion process of wind turbine blade coating in real operation state was simulated, based on the erosion wear test of 1.5 MW wind turbine blade miniature model in operation state. The interaction mode and erosion mechanism between wind turbine blade and sand particles under running state were clarified, by studying the influence of different impeller speeds, blade zones and sand particle sizes on the erosion amount of blade coating, analyzing the micro-morphology of surface at the leading edge and near the trailing edge of the blade tip. In operation state, the erosion process of the wind turbine blade coating was characterized by surface voids, erosive pits, erosive pits combined, small coating peeling and large coating peeling. The erosion process has high similarity, although the erosion amount of blade coating under different impeller speed is not same, the whole process can be divided into wear gestation period, fast wear period and slow wear period. And the erosion amount of the blade coating increases continuously, as the distance between the erosion zones and the blade root increasing. The general trend of erosion process is similar when different size sand particles impact blade coating, but the smaller the particle size, the slower the erosion process develops. The relative motion of sand erosion leading edge can be approximately vertical impact, and the erosion characteristics are mainly near circular erosive pits and coating peeling under transverse crack propagation. The erosion degree is lower than that of the leading edge when the impact is near the trailing edge, and the erosion forms are mainly concave indentation and scaly flake off.
Key words:  wind turbine blade    operation state    sand erosion    micro-morphology
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TH117.1  
基金资助: 中国博士后科学基金(2018M643777XB);内蒙古草原英才“现代农牧业工程新技术研发及应用创新人才团队”(内组通字〔2018〕19号);内蒙古农业大学双一流学科创新团队建设人才培育项目 (NDSC2018-08);内蒙古农业大学高层次人才引进科研启动项目(NDGCC2016-03)
通讯作者:  yongz@imau.edu.cn   
作者简介:  王健,2016年1月毕业于北京理工大学,获得机械工程博士学位。2016年6月开始任职于内蒙古农业大学机电工程学院,讲师,主要从事风力机叶片损伤检测方面的研究。
张永,2009年7月毕业于西安交通大学,获机械工程博士学位,现为内蒙古农业大学机电工程学院教授,博士研究生导师,主要从事数字化农牧业关键技术与装备和机电一体化技术方面的研究,在国内外重要期刊发表文章20多篇,申报发明专利10余项。
引用本文:    
王健, 杜国正, 张永, 武政, 高靖, 苏力德. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 4177-4180.
WANG Jian, DU Guozheng, ZHANG Yong, WU Zheng, GAO Jing, SU Lide. Research on Sand Erosion Wear of Wind Turbine Blade Coating in Operation State. Materials Reports, 2021, 35(4): 4177-4180.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060234  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4177
1 Cai Hui, Peng Zhuyi, Wu Chen, et al. Power Capacitor & Reactive Power Compensation, 2019, 40(3), 153 (in Chinese).
蔡晖, 彭竹弈, 吴晨, 等. 电力电容器与无功补偿, 2019, 40(3), 153.
2 Yuan Guobo.Journal of Desert Research, 2017, 37(6), 1204 (in Chinese).
袁国波. 中国沙漠, 2017, 37(6), 1204.
3 Zhang Xiaoye.Quaternary Sciences, 2007(2), 181 (in Chinese).
张小曳. 第四纪研究, 2007(2), 181.
4 Dai Liping, Yao Shigang, Wang Xiaodong, et al.Acta Energiae Solaris Sinica, 2018, 39(1), 247 (in Chinese).
戴丽萍, 姚世刚, 王晓东, 等. 太阳能学报, 2018, 39(1), 247.
5 Li Deshun, Wang Chengze, Li Yinran, et al. Acta Energiae Solaris Sinica, 2018, 39(3), 627 (in Chinese).
李德顺, 王成泽, 李银然, 等. 太阳能学报, 2018, 39(3), 627.
6 Zhang Yong, Huang Chao, Liu Zhao, et al.Materials Reports B:Research Papers, 2016, 30(10), 95 (in Chinese).
张永, 黄超, 刘召, 等. 材料导报:研究篇, 2016, 30(10), 95.
7 Yu Dong, Li Xinmei, Yu Qing, et al.Transactions of Materials and Heat Treatment, 2014, 35(4), 166 (in Chinese).
余冬, 李新梅, 于青, 等. 材料热处理学报, 2014, 35(4), 166.
8 Dong Xuxu, Li Xinmei, Dong Lanlan, et al.Materials for Mechanical Engineering, 2015, 39(12), 25 (in Chinese).
董旭旭, 李新梅, 董兰兰, 等. 机械工程材料, 2015, 39(12), 25.
9 He Guangjun. Applied Energy Technology, 2017(4), 9 (in Chinese).
何广军. 应用能源技术, 2017(4), 9.
10 Mohamed Tawfik Eraky, Tarek Elmelegy, Mostafa Shazly, et al. In: International Mechanical Engineering Congress and Exposition. Pittsburgh, 2018, pp.87966.
11 Jia Yanhua.China Coatings, 2010, 25(7), 35 (in Chinese).
贾艳华. 中国涂料, 2010, 25(7), 35.
[1] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[2] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[3] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思. 干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性[J]. 材料导报, 2020, 34(20): 20053-20060.
[4] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[5] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[6] 薛媛, 但年华, 但卫华. 多孔胶原-β-磷酸三钙-硫酸软骨素复合膜的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(2): 8-12.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed