Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4170-4176    https://doi.org/10.11896/cldb.19100172
  金属与金属基复合材料 |
轧制单层晶铜箔滑移启动和应变局部化的晶体塑性模拟
陈守东1,2, 卢日环2, 陈子潘1, 孙建1, 李杰1
1 铜陵学院机械工程学院,铜陵 244061
2 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819
Crystal Plasticity Modelling of Slip Activation and Strain Localization in a Copper Single Layer Crystal Under Foil Rolling
CHEN Shoudong1,2, LU Rihuan2, CHEN Zipan1, SUN Jian1, LI Jie1
1 School of Mechanical Engineering, Tongling University, Tongling 244061, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 4296KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在晶粒尺度采用晶体塑性有限元模拟极薄带材轧制成形过程,对优化和改进材料模型以及探究极薄带材塑性变形机制具有重要作用。箔材轧制成形性能主要依赖材料的微观结构(晶界、滑移系、取向)。采用退火态的单层晶铜箔为原料,进行箔轧实验和晶体塑性有限元模拟。建立反映晶粒形貌、晶界和取向各向异性的单层晶铜箔晶体塑性有限元模型,分析极薄带轧制成形中单/多滑移系启动状态和应变局部化现象。为准确构建晶体塑性有限元模拟的初始晶粒结构,消除微观组织亚表面的影响,采用垂直晶界即在厚度方向上建立只有一层晶粒的铜箔晶粒模型。结果表明:晶粒各向异性影响单层晶铜箔的轧制变形机制;晶界处的变形和滑移系运动状态完全不同于晶粒其他位置;单层晶轧制变形的滑移状态表现出明显的各向异性,出现局部滑移带和应变局部化,随轧制变形量的增大,滑移差异显著增大;晶界两侧局部区域存在滑移和变形的显著差异,这为亚晶和微观裂纹源的形核提供了有利的位置。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈守东
卢日环
陈子潘
孙建
李杰
关键词:  极薄带轧制  单层晶  晶体塑性  应变分布  局部滑移    
Abstract: Crystal plasticity finite element modelling of foil rolling prediction was crucial to validate and improve material models as well as to understand underlying plastic deformation mechanism in grain-scale. The deformation properties of foil rolling based materials depend strongly on the microstructure (grain boundary, slip system and orientation). Annealed single layer crystal copper foils were taken as raw materials, and after the processes of foil rolling was studied by experiment and crystal plasticity finite element simulation. The aim of this study was to model single and multiple slip activation and strain localization behavior of foil rolling of copper single layer crystal by using crystal plasticity finite element simulation, which taking into account the heterogeneous distribution of the shapes, grain boundaries and orientations of the grain. To accurately reproduce the initial grain morphology in the CPFEM simulation without assumptions regarding the sub-surface microstructure, a single layer crystal copper foil was used. In particular, it was shown that the heterogeneous distribution of the grain influences significantly the plastic deformation mechanism of single layer crystal copper foil rolling. The slip activation and deformation at grain boundary were significantly different from the interior and surface grain. A single layer crystal slip was markedly heterogeneous, gives rise to form local slip band and strain localization, with rolling reduction driving strong variations, correctly captured by the model. Remarkable variations of slip activation and plastic strain occur between locations either side of grain boundaries, providing appropriate opportunities for sub-grain and micro-crack nucleation.
Key words:  foil rolling    single layer crystal    crystal plasticity    strain field    slip localization
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TG335.5  
基金资助: 国家自然科学基金(51804219;51701144);安徽省自然科学基金(1808085QE161);铜陵学院人才科研启动基金(2016tlxyrc05)
通讯作者:  csdong0910@sina.com   
作者简介:  陈守东,铜陵学院机械工程学院副教授、博士。2010年7月本科毕业于铜陵学院机械工程学院,2016年7月在东北大学轧制技术及连轧自动化国家重点实验室材料加工工程取得博士学位,2018年1月至今在昆明理工大学进行博士后研究工作。主要从事晶体塑性有限元和热障涂层体系设计及第一性原理计算的研究工作,以第一作者身份在International Journal of Mechanical Sciences、Transactions of Nonferrous Metals Society of China、《金属学报》中英文版等SCI学术期刊发表研究论文40余篇,申请国家发明专利4项,其中授权2项。
引用本文:    
陈守东, 卢日环, 陈子潘, 孙建, 李杰. 轧制单层晶铜箔滑移启动和应变局部化的晶体塑性模拟[J]. 材料导报, 2021, 35(4): 4170-4176.
CHEN Shoudong, LU Rihuan, CHEN Zipan, SUN Jian, LI Jie. Crystal Plasticity Modelling of Slip Activation and Strain Localization in a Copper Single Layer Crystal Under Foil Rolling. Materials Reports, 2021, 35(4): 4170-4176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100172  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4170
1 Deng G Y, Tieu A K, Si L Y, et al.Computational Materials Science, 2014, 81, 2.
2 Pham C H, Thuillier S, Manach P Y.Materials Science and Engineering A, 2016, 678, 377.
3 Chen S D, Lu R H, Sun J, et al.Chinese Journal of Nonferrous Metals, 2018, 28(11), 2233 (in Chinese).
陈守东, 卢日环, 孙建,等. 中国有色金属学报, 2018, 28(11), 2233.
4 Chen S D, Liu X H, Liu L Z.International Journal of Mechanical Sciences, 2015, 100, 226.
5 Kim J B, Yoon J W.International Journal of Plasticity, 2015, 73, 3.
6 Meng B, Fu M W.Materials & Design, 2015, 83, 400.
7 Zhang H M, Dong X H.Materials Science and Engineering A, 2016, 658, 450.
8 Rossiter J, Brahme A, Inal K, et al.International Journal of Plasticity, 2013, 46, 82.
9 Yoshida K.International Journal of Mechanical Sciences, 2014, 83, 48.
10 Tasan C C, Hoefnagels J P M, Diehl M, et al.International Journal of Plasticity, 2014, 63, 198.
11 Fu M W, Chan W L.Materials & Design, 2011, 32(10), 4738.
12 Sachtleber M, Zhao Z, Raabe D.Materials Science and Engineering A, 2002, 336(1-2), 81.
13 Song H L, Abe T, Shimizu I, et al.Key Engineering Materials, 2004, 274-276, 337.
14 Pokharel R, Lind J, Li S F, et al. International Journal of Plasticity, 2015, 67, 217.
15 Vachhani S J, Doherty R D, Kalidindi S R. International Journal of Plasticity, 2016, 81, 87.
16 Lai X M, Peng L F, Hu P, et al.Computational Materials Science, 2008, 43(4), 1003.
17 Liu J G, Fu M W, Lu J, et al.Computational Materials Science, 2011, 50(9), 2604.
18 Xu J, Guo B, Shan D B, et al.Materials Transactions, 2013, 54(6), 984.
19 Chan W L, Fu M W, Lu J, et al.Materials Science and Engineering A, 2010, 527(24-25), 6638.
20 Straffelini G, Fontanari V, Zadra M.Engineering Fracture Mechanics, 2013, 109, 262.
21 Lim H, Carroll J D, Battaile C C, et al.International Journal of Mechanical Sciences, 2015, 92, 98.
22 Zhang H M, Diehl M, Roters F, et al.International Journal of Plasticity, 2016, 80, 111.
23 Choi S H, Kim E Y, Woo W, et al.International Journal of Plasticity, 2013, 45, 85.
24 Klusemann B, Svendsen B, Vehoff H.International Journal of Plasticity, 2013, 50, 109.
25 Turner T J, ShadeH P A, Schuren J C, et al.Modelling and Simulation in Materials Science and Engineering, 2013, 21(1), 015002.
26 Bassani J L, Wu T Y.Proceedings of the Royal Society A, 1991, 435(1893), 21.
27 Chen S D, Liu X H, Liu L Z, et al.Acta Metallurgica Sinica, 2016, 52(1), 120 (in Chinese).
陈守东, 刘相华, 刘立忠,等. 金属学报, 2016, 52(1), 120.
[1] 马涛, 崔席勇, 张伟, 黎炜, 王强, 张亮. 常规热连轧超薄带钢生产技术研究[J]. 《材料导报》期刊社, 2017, 31(19): 80-83.
[2] 蒋波, 戴光咏, 闫永明, 刘广磊, 王芝林, 王国存, 刘雅政. 具有合理硬度梯度和组织分布的渗碳钢23CrNi3Mo的热处理冷却行为*[J]. 《材料导报》期刊社, 2017, 31(8): 70-75.
[3] 张聪惠, 薛少博, 肖桂枝, 颜学柏, 舒滢. 微米级稀有金属箔材研究现状[J]. 材料导报, 2020, 34(13): 13139-13145.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed