Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13139-13145    https://doi.org/10.11896/cldb.19060009
  金属与金属基复合材料 |
微米级稀有金属箔材研究现状
张聪惠1, 薛少博1,2, 肖桂枝1, 颜学柏2, 舒滢2
1 西安建筑科技大学冶金工程学院,西安 710055
2 西北有色金属研究院,西安 710016
Research Status of Micron Rare Metal Foil
ZHANG Conghui1, XUE Shaobo1,2, XIAO Guizhi1, YAN Xuebai2, SHU Ying2
1 College of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Northwest Institute For Non-ferrous Metal Research, Xi’an 710016, China
下载:  全 文 ( PDF ) ( 3470KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空航天、电子通讯、军事化工、核工业及海底电缆铺设等领域的快速发展,对高质量稀有金属箔材的需求日益增多。在稀有金属箔材定义中,主要是针对厚度小于0.02 mm的产品,其中将厚度小于0.01 mm的产品称为微米级产品。与此同时,对微米级稀有金属箔材的制备技术和设备也提出了更高的要求,其研究与生产成为本行业的研究热点。
箔材的制备技术主要有机械轧制、电解沉积法、磁控溅射法及真空热蒸镀法等,其中机械轧制法的应用最为广泛。在微米级箔材轧制过程中,目标尺寸厚度及精度的控制、板型的选择、提高表面光洁度、减少断带、实现长卷连续轧制是关键。通过对箔材轧制中出现的问题进行了探讨,分析总结了保证箔材顺利轧制的三个工艺关键技术:(1)箔材板型控制技术;(2)箔材轧制张力稳定性控制技术;(3)轧辊磨削工艺技术。当轧件厚度小于某一厚度值时,无论是加大设备轧制力,还是提高人员对设备的操作能力,都无法再继续减小轧件的厚度,则这个厚度称为最小可轧厚度。在微米级箔材轧制过程中,目前主要分为两种轧制方式,一种是同步轧制,另一种是异步轧制,并且得到了相关的轧制模型。在对微米级稀有金属箔材进行组织与力学性能表征过程中,也发现了许多与常规尺寸材料相悖的方面,对于这些现象产生的机理,还需要进一步研究。这也为后续对稀有金属箔材的研究提供了新的方向。
本文介绍了国内外箔材制备技术与设备,并分析了制备微米级稀有金属过程中的关键技术研究现状。介绍了微米级箔材轧制中同步轧制与异步轧制两种轧制条件的最小轧制厚度理论。同时简单分析了微米级箔材在微观组织与力学性能方面的特有现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张聪惠
薛少博
肖桂枝
颜学柏
舒滢
关键词:  微米级  异步轧制  稀有金属  最小可轧厚度    
Abstract: With the rapid development of aerospace, electronic communications, military chemical, nuclear industry and submarine cable laying, the demand for high quality rare metal foils is increasing. In the definition of rare metal foils, it is mainly for products with a thickness less than 0.02 mm. Among them, a product with a thickness of less than 0.01 mm is referred as a micron order. Meanwhile, higher requirements have been put forward for the preparation technology and equipment of micron rare metal foil. The research and production of micron rare metal foil has become a hot spot in the industry.
The preparation technology of the foil mainly includes mechanical rolling, electrolytic deposition, magnetron sputtering and vacuum thermal evaporation, among which the mechanical rolling method is the most extensive. In the micron foil rolling process, the control of the target size thickness and precision, the good shape, the smooth surface and no defects, the reduction of the broken belt, and the realization of long-roll continuous rolling are the key control points. Through the discussion of the problems in the foil rolling, the three key technologies to ensure the smooth rolling of the foil are analyzed and summarized: (1) foil plate type control technology, (2) foil rolling tension stability control technology, (3) roll grinding technology. When the thickness of the rolled piece is less than a certain thickness value, whether the rolling force is increased or the capacity of the equipment is increased, the thickness of the rolled piece cannot be further reduced, this thickness is called the minimum rollable thickness. In the micron foil rolling process, there are currently two main rolling methods, one is synchronous rolling, the other is asymmetric rolling, and the relevant rolling model is obtained. In the process of preparing micron-sized rare metal foils, many aspects that are contrary to conventional dimensional materials have also been found, and further research is needed on the mechanism of the phenomenon. This also provides a new direction for subsequent rare metal foils.
This paper introduces the domestic and foreign foil preparation technology and equipment, and analyzes the research status of key technologies in the process of preparing micron rare metals. The minimum rolling thickness theory of two rolling conditions, synchronous rolling and asynchronous rolling, in micron-sized foil rolling is introduced, and simply analyzes the phenomenon that occurred during the rolling process of micron-sized foil.
Key words:  micron    asymmetric rolling    rare metal    minimum rolling thickness
                    发布日期:  2020-06-24
ZTFLH:  TG335.5+8  
基金资助: 国家自然科学基金(51674187;51804241);陕西省自然科学基础研究项目(2016JM5032);陕西省教育厅重点实验室研究项目(17JS065);东北大学轧制技术及连轧自动化国家重点实验室开放课题基金项目(2016004)
通讯作者:  guizhixiao@163.com   
作者简介:  张聪惠,西安建筑科技大学冶金学院教授,博士研究生导师,中国材料研究学会青年工作委员会理事,中国机械工程学会材料分会委员会理事。主要从事表面纳米化金属材料及其性能研究,开展了表面纳米化及其对组织性能的影响研究,内容涉及表面纳米化加工工艺及其优化、表面纳米化细化机理、表面纳米化金属材料热稳定性、表面纳米化对金属材料性能(强度、硬度、腐蚀、磨损、疲劳等)的影响机理及相关模拟、表面纳米化金属材料表层合金元素扩渗机理及其性能研究。
肖桂枝,西安建筑科技大学讲师,毕业于东北大学,工学博士,主要从事金属材料工艺及组织性能机理、热处理、腐蚀断裂等方面研究。
引用本文:    
张聪惠, 薛少博, 肖桂枝, 颜学柏, 舒滢. 微米级稀有金属箔材研究现状[J]. 材料导报, 2020, 34(13): 13139-13145.
ZHANG Conghui, XUE Shaobo, XIAO Guizhi, YAN Xuebai, SHU Ying. Research Status of Micron Rare Metal Foil. Materials Reports, 2020, 34(13): 13139-13145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060009  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13139
1 Wang A H. Steel Rolling,2011,28(4),42(in Chinese).
王爱华. 轧钢, 2011,28(4),4.
2 Zhang L T. Micron Aluminum and copper foils the study of performance and microstructure. Master’s Thesis, Sichuan University, China, 2006(in Chinese).
张丽婷. 微米铝箔和铜箔的性能与微观分析. 硕士学位论文, 四川大学, 2006.
3 Chen W L. Plating & Finishing, 1989, 11(1), 24(in Chinese).
陈文亮. 电镀与精饰, 1989, 11(1), 24.
4 Liu X D, Yang Y, Bai L, et al. High Power Laser and Particle Beams, 2016, 28(2), 40(in Chinese).
刘旭东, 杨毅, 白黎, 等. 强激光与粒子束, 2016, 28(2), 40.
5 Qian W J. Metallurgical Equipment, 2015(3),14(in Chinese).
钱文军. 冶金设备, 2015(3), 14.
6 Qian W J. Metallurgical Equipment, 1982(3), 49(in Chinese).
钱文军. 冶金设备,1982(3), 49.
7 Qian Wenjun, et al. In:The 7th International Conference on steel Rol-ling, Tokyo,1998,pp.141.
8 Chen X Q. Modern Manufacturing Technology and Equipment, 2017(9), 119(in Chinese).
陈晓勤. 现代制造技术与装备, 2017(9), 119.
9 张国霞,薛少博,等. 中国专利,CN207103421U,2018.
10 张国霞,舒滢,展宏勋,等.中国专利,CN107442570A,2017.
11 Zhang S T. Gangtie, 1982,16(10), 1(in Chinese).
张树堂. 钢铁,1982,16(10), 1.
12 Liu L W, Zhang S T, Wu Z P. Iron and Steel, 2000,35(4), 37(in Chinese).
刘立文,张树堂,武志平. 钢铁,2000,35(4), 37.
13 Chen C K. Aluminum Fabrication, 2005(6), 10(in Chinese).
陈长科.铝加工,2005(6), 10.
14 Zhang H C, Qi A M, Liu H F, et al. China Mechanical Engineering, 2008, 19(14), 1748(in Chinese).
张宏昌, 郗安民, 刘鸿飞,等.中国机械工程, 2008, 19(14), 1748.
15 Liu X F, Wang L Y.Journal of Chongqing University (Natural Science Edition), 2001, 24(1), 63(in Chinese).
刘雪峰, 汪凌云.重庆大学学报(自然科学版), 2001, 24(1), 63.
16 Peng G, Liu L B, Chen L J. Heilongjiang Electronic Technology, 1997 (6), 26(in Chinese).
彭刚, 刘立彬, 陈丽娟. 黑龙江电子技术, 1997(6), 26.
17 Zhang G X, Zhan H B, Shu Y, et al. Hot Working Technology, 2018(17), 133(in Chinese).
张国霞, 展宏勋, 舒滢, 等. 热加工工艺, 2018(17), 133.
18 Tian H. Aluminum Fabrication, 2014(2), 38(in Chinese).
田洪. 铝加工, 2014(2), 38.
19 孟群. 冷轧薄板轧制用辊的开发历程,世界金属导报,2017.
20 Li X Y. Research on extremely thin strip rolling and minimum permissible thickness. Master’s Thesis,Northeastern University, China, 2012(in Chinese).
李翔宇. 极薄带材轧制及最小可轧厚度研究. 硕士学位论文, 东北大学, 2012.
21 Zhao Q L, Liu X H. Steel Rolling, 2018, 35(2), 1(in Chinese).
赵启林, 刘相华. 轧钢, 2018, 35(2), 1.
22 Stone M D. Iron and Steel Engineer, 1953, 30(2), 61.
23 Dong X H, Wang Q, Zhang H M, et al. Scientia Sinica(Technologica), 2013, 43(2), 115(in Chinese).
董湘怀, 王倩, 章海明, 等. 中国科学:技术科学, 2013, 43(2), 115.
24 Liu X H, Zhao Q L. Steel Rolling,2018, 35(4), 1(in Chinese).
刘相华, 赵启林. 轧钢, 2018, 35(4), 1.
25 Wang S, Niu L, Chen C, et al. Materials Science & Engineering A, 2018, 730,244.
26 Stölken J S, Evans A G. Acta Materialia, 1998, 46(14),5109.
27 Chen S D. Grain statistics effect on deformation behavior in asymmetric rolling of pure copper foil by crystal plasticity finite element model. Master’s Thesis,Northeastern University, China, 2012(in Chinese).
陈守东. 基于晶体塑性有限元的铜极薄带轧制过程模拟研究. 硕士学位论文, 东北大学, 2016.
28 Song M, Liu X H, Sun X K, et al. Transactions of Materials and Heat Treatment, 2016, 37(S1), 5(in Chinese).
宋孟, 刘相华, 孙祥坤, 等. 材料热处理学报, 2016, 37(S1), 5.
29 Xu Z T, Peng L F, Lai X M, et al. Materials Science & Engineering A, 2014, 611, 345.
30 Chen S D, Lu R H, Sun J,et al. Materials Science and Technology, 2018, 26(4), 88(in Chinese).
陈守东, 卢日环, 孙建, 等. 材料科学与工艺, 2018, 26(4), 88.
31 Liu X H, Song M, Sun X K, et al. Journal of Mechanical Engineering, 2017, 53(10), 1(in Chinese).
刘相华, 宋孟, 孙祥坤, 等. 机械工程学报, 2017, 5(10), 1.
32 Niu L, Wang S, Chen C, et al. Materials Science & Engineering A,2017, 707,435.
33 Chen Chang, Qian Sanfeng, Wang Shan, et al. Materials Characterization, 2018, 136,257.
34 Ren Junqiang, Sun Qiaoyan, Xiao Lin, et al. Computational Materials Science, 2014, 92,8.
35 Zhao Henglv, Song Min, Ni Song, et al. Acta Materialia, 2017, 131,271.
36 Hu Xinyi, Zhao Henglv,Ni Song, et al. Materials Characterization, 2017, 129,149.
37 Zhao Henglv, Hu Xinyi, Song Min, et al. Scripta Materialia, 2017, 132,63.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 包建民, 闫志英, 李优鑫. 微米级多孔聚苯乙烯-二乙烯苯微球的制备、改性及应用综述[J]. 材料导报, 2018, 32(17): 3060-3067.
[3] 廖亚龙, 曹磊, 王祎洋, 叶朝. 溶液中镓的提取与分离研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 133-138.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed