Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13146-13154    https://doi.org/10.11896/cldb.19040229
  金属与金属基复合材料 |
含难熔金属涂层的研究进展
韩雪莹, 刘新利, 吴壮志, 段柏华, 王德志
中南大学材料科学与工程学院,教育部有色金属材料科学与工程重点实验室,长沙 410083
Research Progress in Refractory Metal Coatings
HAN Xueying, LIU Xinli, WU Zhuangzhi, DUAN Bohua, WANG Dezhi
Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 2262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料表面性能直接影响着材料能否在特定环境中长期服役。表面涂层技术作为一种常用的表面改性方法,通过在基体表面涂覆一层或多层金属或非金属,提高基体耐磨、耐热、耐腐蚀、高温稳定等性能。难熔金属及其合金、金属间化合物、碳化物、氮化物等,因具有高温强度高、抗液态金属腐蚀性能好、可塑性加工等特点,已成为航空航天、国防军工等领域最具潜力的涂层材料。
含难熔金属涂层的制备方法有热喷涂、激光熔覆、气相沉积等,且相关技术仍在不断优化和创新,以适应日益严苛的服役条件,如人们在传统热喷涂上进行改进,开发了超音速火焰喷涂和超音速等离子喷涂技术,结合激光熔覆和冷喷涂开发出激光辅助冷喷涂技术,还提出了利用接触固体渗碳方法获得难熔金属碳化物涂层。在研究较多的难熔金属涂层、合金涂层和碳化物涂层的基础上,学者通过成分及工艺优化不断改善涂层耐磨、耐高温等性能,还获得了具有独特性能的Ni-W、Ni-Mo、Ta纳米复合薄膜和Mo2C复合涂层及高硬度WN涂层;由于单一涂层的应用存在局限,开发具有不同功能的复合涂层已经成为研究热点,如具有润滑性能的难熔金属硫化物复合涂层、Mo2Si系复合涂层等;由于晶粒细化带来的优势,多种纳米级复合薄膜制备技术也有待开发推广。此外,在难熔金属涂层回收方面,关于WC涂层的回收提取技术研究较深入,而我国难熔金属回收再利用比例较低,从涂层中高效清洁回收难熔金属的关键技术有待研发。
本文介绍了不同种类的含难熔金属涂层,包括金属基合金涂层、陶瓷涂层(主要包括碳化物涂层、氮化物涂层、硅化物涂层、硫化物涂层)、难熔高熵合金涂层等,综述了不同涂层的应用领域、制备方法及涂层中难熔金属的回收策略,指出了目前研究中面临的问题,展望了未来含难熔金属涂层的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩雪莹
刘新利
吴壮志
段柏华
王德志
关键词:  难熔金属  涂层  制备  回收    
Abstract: The surface properties of materials can directly affect whether the materials can be used in a specific environment for a long time. As a common surface modification method, surface coating technology can improve the properties of the substrate such as wear resistance, heat resistance, corrosion resistance and high temperature stability by coating one or more layers of metal or non-metal on the substrate. Refractory metals and their alloys, intermetallic compounds, carbides, nitrides, etc., have become the most potential coating materials in aerospace, defense and military industries due to their excellent high-temperature strength, good resistance to liquid metal corrosion, plastic processing and ot-her characteristics.
The preparation methods for refractory metal coatings include thermal spraying, laser cladding, vapor deposition, etc., and related technologies are still being optimized and innovated to meet increasingly severe service conditions. For example, high velocity oxygen fuel spraying and supersonic plasma spraying technology have been developed on the basis of traditional thermal spraying. Researchers combined laser cladding with cold spraying technology, developed laser-assisted cold spraying technology, and also proposed a solid carburizing method to obtain refractory metal carbide coatings. On the basis of refractory metal, alloy and carbide coatings, researchers have continuously improved the wear resis-tance and high temperature resistance of the coatings through composition and process optimization. Ni-W, Ni-Mo, Ta nanocomposite film and Mo2C composite coating with unique properties and high hardness WN coating are also obtained. Due to the limitations of single coating application, the development of composite coatings with different functions have become a research hotspot, such as refractory metal sulfide composite coatings with lubricating properties, Mo2Si composite coatings, etc. According to the advantages brought by grain refinement, a variety of preparation technology for composite nanoscale film has yet to be developed. In addition, in the recovery of refractory metal coatings, the research on the recovery and extraction technology of WC coatings is more in-depth, but the proportion of refractory metal recycling in China is relatively low. The key technology for efficient and clean recovery of refractory metals from coatings needs to be developed.
This article describes different types of refractory metal-containing coatings, including metal-based alloy coatings, ceramic coatings (mainly including carbide coatings, nitride coatings, silicide coatings, sulfide coatings), and refractory high entropy alloy coatings. The application fields of different coatings, preparation methods and recovery strategies of refractory metals are reviewed. The problems faced in the current research are pointed out, and the research direction of refractory metal coatings in the future is prospected.
Key words:  refractory metal    coating    preparation    recycling
                    发布日期:  2020-06-24
ZTFLH:  TG146  
基金资助: 国家重点研发计划资助(2018YFC1901700)
通讯作者:  liuxinli@csu.edu.cn; dzwang@csu.edu.cn   
作者简介:  韩雪莹,中南大学材料科学与工程学院硕士研究生,目前主要研究领域为难熔金属涂层。
刘新利, 中南大学副教授,硕士研究生导师,2015年毕业于中南大学材料学专业,获博士学位。主要从事难熔金属相关材料开发及回收、粉末冶金多孔材料等方面的基础与应用研究。曾在国内外科技刊物上发表论文40余篇,申请专利5项,获授权专利2项。
引用本文:    
韩雪莹, 刘新利, 吴壮志, 段柏华, 王德志. 含难熔金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13146-13154.
HAN Xueying, LIU Xinli, WU Zhuangzhi, DUAN Bohua, WANG Dezhi. Research Progress in Refractory Metal Coatings. Materials Reports, 2020, 34(13): 13146-13154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040229  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13146
1 Bai S X, Niu D, Zhu L A, et al. Cemented Carbide, 2018, 35(6), 381(in Chinese).
白书欣, 牛顿, 朱利安, 等. 硬质合金, 2018, 35(6), 381.
2 Zheng X, Bai R, Wang D H, et al. Rare Metal Materials and Enginee-ring, 2011, 40(10), 1871(in Chinese).
郑欣, 白润, 王东辉, 等. 稀有金属材料科学与工程, 2011, 40(10), 1871.
3 Lian Z W, Fang X Q, Han W J, et al. Fusion Engineering and Design, 2016, 112,136.
4 Liu J J, Li T H, Hao Z B, et al. Surface Technology, 2003, 32(3), 28(in Chinese).
刘建军, 李铁虎, 郝志彪, 等. 表面技术, 2003, 32(3), 28.
5 Zhang X H, Lin C G, Cui S, et al. Acta Armamentarii, 2013, 34(3), 365(in Chinese).
张雪辉, 林晨光, 崔舜, 等. 兵工学报, 2013, 34(3), 365.
6 Kang H. Journal of Nuclear Materials, 2004, 335(1), 1.
7 Peng X M, Xia C Q, Wu A R, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(6), 1567(in Chinese).
彭小敏, 夏长清, 吴安如, 等. 中国有色金属学报, 2015, 25(6), 1567.
8 Wu Y, Yu G, He X L, et al. Rare Metal Materials and Engineering, 2012, 41(7), 1211(in Chinese).
武扬, 虞钢, 何秀丽, 等. 稀有金属材料与工程, 2012, 41(7), 1211.
9 Allahyarzadeh M H, Aliofkhazraei M, Rezvanian A R, et al. Surface and Coatings Technology, 2016, 307, 978.
10 Zhang X F. Preparation and performance of plasma-oriented tungsten coating in fusion reactor. Master’s Thesis, Jingdezhen Ceramic Institute, China, 2012(in Chinese).
张小锋. 聚变堆中面向等离子体钨涂层的制备及其性能研究. 硕士学位论文, 景德镇陶瓷学院, 2012.
11 Li B S, Li D D, Mei T Y, et al. Results in Physics, 2019, 13, 102375.
12 Horwath J A. Thin Solid Films, 1980, 73(1), 79.
13 Yang Z X, Liu G M, Yan T, et al. Surface Technology, 2015, 44(5), 20(in Chinese).
杨忠须, 刘贵民, 闫涛, 等. 表面技术, 2015, 44(5), 20.
14 Liu Y S, Xu H, Li J, et al. High Power Laser and Particle Beams, 2014, 26(12), 227(in Chinese).
刘艳松, 许华, 李俊, 等. 强激光与粒子束, 2014, 26(12), 227.
15 Shetty A R, Hegde A C. Materials Science for Energy Technologies, 2018, 1, 97.
16 Yan T, Liu G M, Zhu S, et al. Materials Protection, 2018, 51(2), 31(in Chinese).
闫涛, 刘贵民, 朱硕, 等. 材料保护, 2018, 51(2), 31.
17 Siopis M, Neu Richard W. IEEE Transactions on Magnetics, 2013, 49(8), 4831.
18 Yan T, Liu G M, Wu X, et al. China Surface Engineering, 2017, 30(1), 107(in Chinese).
闫涛, 刘贵民, 吴行, 等. 中国表面工程, 2017, 30(1), 107.
19 Yan T, Liu G M, Zhu S, et al. Electroplating & Finishing, 2018, 37(2), 93(in Chinese).
闫涛, 刘贵民, 朱硕, 等. 电镀与涂饰, 2018, 37(2), 93.
20 Duan Y H. Study on interface characteristics and biological characteristics of enamel coated artificial prosthesis. Master’s Thesis, The Fourth Military Medical University, China, 2011(in Chinese).
段永宏. 钽涂层人工假体界面特性及生物学特性的研究. 硕士学位论文, 第四军医大学, 2011.
21 Yu X, Tan L, Yang H, et al. Journal of Alloys and Compounds, 2015, 644, 698.
22 Song J, Zhang P Z, Wei D B, et al. Materials Characterization, 2014, 98, 54.
23 Li C Y, Huang J F, Lu J, et al. Corrosion Science, 2012, 63(1), 182.
24 Pan T J, Chen Y, Zhang B, et al. Applied Surface Science, 2016, 369, 320.
25 Zhang C H, Zhang S, Zhang X C, et al. Rare Metals, 2004, 28(5), 852(in Chinese).
张春华, 张松, 张希川, 等. 稀有金属, 2004, 28(5), 852.
26 Dai J, Li S, Zhang H, et al. Surface and Coatings Technology, 2018, 344, 479.
27 Yang G J, Gao P H, Li C X, et al. Scripta Materialia, 2012, 66(10), 777.
28 Wang G, Gu K, Huang Z, et al. Materials Letters, 2016, 185, 363.
29 Zhao J, Chen X M, Wu Y M, et al. Ordnance Material Science and Engineering, 2017, 40(2), 100(in Chinese).
赵坚, 陈小明, 吴燕明, 等. 兵器材料科学与工程, 2017, 40(2), 100.
30 Basak A K, Celis J P, Ponthiaux P, et al. Surface & Coatings Technology, 2012, 558(16), 377.
31 Human A M, Exner H E. Materials Science and Engineering:A, 1996, 209, 180.
32 Wang G, Xing C, Tao F, et al. Surface & Coatings Technology, 2016, 305, 62.
33 Wang H B, Lu H, Song X Y, et al. Corrosion Science, 2019, 147, 372.
34 Hu R, Li J S, Li J X, et al. The Chinese Journal of Nonferrous Metals, 2001, 11(z2), 172(in Chinese).
胡锐, 李金山, 李进学, 等. 中国有色金属学报, 2001, 11(z2), 172.
35 Zhou W Y, Yi M Z, Ran L P, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(4), 990(in Chinese).
周文艳, 易茂中, 冉丽萍, 等. 中国有色金属学报, 2015, 25(4), 990.
36 Zhao Z Y, Hui P F, Wang T, et al. Applied Surface Science, 2018, 462, 48.
37 Zhang E G, Huang B, Zhou Q. Journal of Ceramics, 2017, 38(1), 8(in Chinese).
张而耕, 黄彪, 周琼. 陶瓷学报, 2017, 38(1), 8.
38 He H W, Zhou K C, Xiong X. Rare Metal Materials and Engineering, 2004, 33(5), 490(in Chinese).
何捍卫, 周科朝, 熊翔. 稀有金属材料与工程, 2004, 33(5), 490.
39 Nyberg H, Tokoroyama T, Wiklund U, et al. Surface and Coatings Technology, 2013, 222, 48.
40 Yin H F, Yang Y N. Acta Materiae Compositae Sinica, 2014, 31(5), 1258(in Chinese).
尹洪峰, 杨祎诺. 复合材料学报, 2014, 31(5), 1258.
41 Wang Y, Xu Y D, Wang Y G, et al. Materials Letters, 2010, 64(19), 2068.
42 Ding M H. Preparation and evaluation of TaC and TaN based coatings on medical 316L stainless steel surfaces. Master’s Thesis, Harbin Enginee-ring University, China, 2010(in Chinese).
丁明惠. 医用316L不锈钢表面TaC及TaN基涂层的制备与评价. 硕士学位论文, 哈尔滨工程大学, 2010.
43 Wang L. The effect of tungsten content on the tribological properties of CrWN coating under different lubrication conditions. Master’s Thesis, China University of Geosciences, China, 2018(in Chinese).
王莉. 钨含量对CrWN涂层在不同润滑条件下的摩擦学性能影响研究. 硕士学位论文,中国地质大学, 2018.
44 Hsieh T H, Zhu Y J, Yu Z H, et al. Journal of Nanoscience and Nanotechnology, 2017, 17(7), 5031.
45 Wu F B, Tien S K, Lee J W, et al. Surface and Coatings Technology, 2006, 200(10), 3194.
46 Bao G L, Zhang D T, Qiu C, et al. Hot Working Technology, 2018, 47(24), 119(in Chinese).
包改磊, 张大童, 邱诚, 等. 热加工工艺, 2018, 47(24), 119.
47 Zhang J, Zheng R B, Zhang Z, et al. Hot Working Technology, 2015, 44(14), 207(in Chinese).
张杰, 郑荣部, 张政, 等. 热加工工艺, 2015, 44(14), 207.
48 Yang K M, Wang J X, Yang S Y, et al. Ceramics International, 2015, 354, 324.
49 Zhao Y, Zhou L, Zhang T, et al. Journal of Chongqing University of Technology(Natural Science), 2019, 33(3),155(in Chinese).
赵洋, 周林, 张涛, 等. 重庆理工大学学报(自然科学), 2019, 33(3), 155.
50 Sakidja R, Perepezko J H, Kim S, et al. Acta Materialia, 2008, 56(18), 5223.
51 Ouyang G Y, Ray P K, Srinivasa T, et al. Applied Surface Science, 2019, 470, 289.
52 Xiao L R, Li W, Xu L L, et al. Materials Science and Engineering of Powder Metallurgy, 2011, 16(6), 843(in Chinese).
肖来荣, 李威, 许谅亮, 等. 粉末冶金材料科学与工程, 2011, 16(6), 843.
53 Mao X Z. Study on the properties of Mo5Si3 enhanced MoSi2-based nano/nano gradient composite coatings. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012(in Chinese).
毛相震. Mo5Si3增强MoSi2基纳米/纳米梯度复合涂层性能的研究. 硕士学位论文, 南京航空航天大学, 2012.
54 Deng W, Zhao X Q, Li S J, et al. China Surface Engineering, 2017, 30(5), 110(in Chinese).
邓雯, 赵晓琴, 李双建, 等.中国表面工程, 2017, 30(5), 110.
55 Li Y C, Qiu M, Miao Y W, et al. Modern Manufacturing Engineering, 2015(6), 22(in Chinese).
李迎春, 邱明, 苗艳伟, 等. 现代制造工程, 2015(6), 22.
56 Gao G Y, Cao J. Paint & Coatings Industry, 2017, 47(5), 34(in Chinese).
高刚毅, 曹均. 涂料工业, 2017, 47(5), 34.
57 Lian Y, Chen H, Deng J, et al. International Journal of Refractory Me-tals and Hard Materials, 2018, 72, 286.
58 Wang Y, Shang X J, Tian X Q, et al. Rare Metals and Cemented Carbides, 2018, 46(5), 30(in Chinese).
王茵, 尚晓娟, 田兴强, 等. 稀有金属与硬质合金, 2018, 46(5), 30.
59 Long Q, Luo J, Li X L, et al. Electroplating & Finishing, 2018, 37(8), 359(in Chinese).
龙琼, 罗君, 李小丽, 等. 电镀与涂饰, 2018, 37(8), 359.
60 Li D L, Zhou F, Yu S H. High Power Laser and Particle Beams, 2016, 28(2), 190(in Chinese).
李栋梁, 周芳, 余师豪. 强激光与粒子束, 2016, 28(2), 190.
61 Cheng J B, Liang X B, Xu B S. Surface and Coatings Technology, 2014, 240,184.
62 An X L, Liu Q B, Zheng B. Infrared and Laser Engineering, 2014, 43(4), 1140(in Chinese).
安旭龙, 刘其斌, 郑波. 红外与激光工程, 2014, 43(4), 1140.
63 Zhou F, Liu Q B, Zheng B. High Power Laser and Particle Beams, 2015, 27(11), 272(in Chinese).
周芳, 刘其斌, 郑波. 强激光与粒子束, 2015, 27(11), 272.
64 Tunes M A, Vishnyakov V M. Materials & Design, 2019, 170, 107692.
65 Zhang F. Preparation of refractory metal coatings by plasma spraying and their microstructure and properties. Master’s Thesis, Lanzhou University of Technology, China, 2018(in Chinese).
张帆. 等离子喷涂制备难熔金属涂层及其组织和性能的研究. 硕士学位论文, 兰州理工大学, 2018.
66 Yang E B, Jia G, Wang B M, et al. Hot Working Technology, 2018, 47(20),160(in Chinese).
杨二斌, 贾刚, 王伯铭, 等. 热加工工艺, 2018, 47(20), 160.
67 Jian Z H, Ma Z, Wang F C, et al. Ordnance Material Science and Engineering, 2007, 30(2), 27(in Chinese).
简中华, 马壮, 王富耻, 等. 兵器材料科学与工程, 2007, 30(2), 27.
68 Lv Y H, Zhang Q F. Powder Metallurgy Industry, 2018, 28(4), 31(in Chinese).
吕艳红, 张启富. 粉末冶金工业, 2018, 28(4), 31.
69 Wu Y M, Chen X M, Zhou X L, et al. Transactions of Materials and Heat Treatment, 2016, 37(10), 165(in Chinese).
吴燕明, 陈小明, 周夏凉, 等. 材料热处理学报, 2016, 37(10), 165.
70 Huang P K, Yeh J W, Shun T T, et al. Advanced Engineering Materials, 2004, 6(1-2), 74.
71 King D J M, Middleburgh S C, Mcgregor A G, et al. Acta Materialia, 2016, 104, 172.
72 Liu K, Li Y J, Wang J, et al. Materials & Design, 2015, 87, 66.
73 Zhang M N, Zhou X L, Yu X N, et al. Surface and Coatings Technology, 2017, 311, 321.
74 Qi P B, Liang X B, Tong Y G, et al. Applied Laser, 2018, 38(3), 382(in Chinese).
漆陪部, 梁秀兵, 仝永刚, 等. 应用激光, 2018, 38(3), 382.
75 Du J H, Li Z X, Zhou H, et al. Cemented Carbide, 2003, 20(3), 165(in Chinese).
杜继红, 李争显, 周慧, 等. 硬质合金, 2003, 20(3), 165.
76 Zhang Z L, Li Z S, He Q B, et al. Surface Technology, 2005, 34(4), 43(in Chinese).
张昭林, 李忠盛, 何庆兵, 等. 表面技术, 2005, 34(4), 43.
77 Liu Y H, Zhang Y C, Ge C C. Materials Science and Engineering of Powder Metallurgy, 2011, 16(3), 315(in Chinese).
刘艳红, 张迎春, 葛昌纯. 粉末冶金材料科学与工程, 2011, 16(3), 315.
78 Ganne T, Jérme Crépin, Serror S, et al. Acta Materialia, 2002, 50(16), 4149.
79 Maier H, Luthin J, Balden M, et al. Surface & Coatings Technology, 2001, 142-144, 733.
80 Tsai M H, Yeh J W, Gan J Y. Thin Solid Films, 2008, 516(16), 5527.
81 Jones M, Cockburn A, Lupoi R, et al. Materials Letters, 2014, 134, 295.
82 Li Z H, Yang L J, Li B, et al. Chinese Journal of Lasers, 2015, 42(11), 158(in Chinese).
李祉宏, 杨理京, 李波, 等. 中国激光, 2015, 42(11), 158.
83 Wang W Z. Research on aging and peeling of thermal insulation coatings for power motor cores. Master’s Thesis, Hefei University of Technology, China, 2018(in Chinese).
王文哲. 动力电机铁芯再制造绝缘涂层老化与剥离研究. 硕士学位论文, 合肥工业大学, 2018.
84 Li X F. Cemented Carbide, 2001(3), 167(in Chinese).
李学芳. 硬质合金, 2001(3), 167.
85 Shemi A, Magumise A, Ndlovu S, et al. Minerals Engineering, 2018, 122, 195.
86 Freemantle C S, Sacks N. Journal of the Southern African Institute of Mining and Metallurgy, 2015, 115(12), 1207.
87 Luo L, Miyazaki T, Shibayama A, et al. Minerals Engineering, 2003, 16(7), 665.
88 Li M, Xi X, Nie Z, et al. Recovery of tungsten from WC-Co hard metal scraps using molten salts electrolysis. Journal of Materials Research and Technology, 2018, 10, 10.
89 Dai Y Y, Zhong H, Zhong H Y. Nonferrous Metals, 2009, 61(3), 87(in Chinese).
戴艳阳, 钟晖, 钟海云. 有色金属, 2009, 61(3), 87.
90 Wang J J, Wang X H, Zhang Y, et al. Rare Metals, 2015, 39(3), 251(in Chinese).
汪加军, 王晓辉, 张盈, 等. 稀有金属, 2015, 39(3), 251.
[1] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[2] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[3] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[4] 张梦清, 乔玉林, 吉小超, 周克兵, 张伟, 于鹤龙. 线圈扫描速度对感应熔覆NiCrBSi涂层组织与性能的影响[J]. 材料导报, 2020, 34(6): 6120-6125.
[5] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[6] 金嘉炜, 刘传扬, 张冶, 刘国伟, 楚增勇, 李公义. 金纳米线的制备及传感应用研究进展[J]. 材料导报, 2020, 34(5): 5085-5095.
[7] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[8] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[9] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[10] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[11] 张凤云, 姜勇刚, 冯军宗, 李良军, 冯坚. 快速制备纳米SiO2粉末基隔热复合材料的研究进展及展望[J]. 材料导报, 2020, 34(11): 11043-11048.
[12] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[13] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[14] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[15] 胡贵生, 章超, 钱晨阳, 文建新. 钼尾矿资源综合利用最新研究进展概述[J]. 材料导报, 2019, 33(Z2): 233-238.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed