Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4124-4128    https://doi.org/10.11896/cldb.19090111
  金属与金属基复合材料 |
Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响
王颂博1, 李全安1,2, 陈晓亚1,3, 朱利敏1, 张帅1, 关海昆1
1 河南科技大学材料科学与工程学院,洛阳 471023
2 有色金属共性技术河南省协同创新中心,洛阳 471023
3 西安理工大学材料科学与工程学院,西安 740048
Effect of Zn on Hot Compression Behavior of Mg-11Gd-3Y-0.5Zr Alloy
WANG Songbo1, LI Quanan1,2, CHEN Xiaoya1,3, ZHU Limin1, ZHANG Shuai1, GUAN Haikun1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Collaborative Innovation Center of Nonferrous Metals, Henan Province, Luoyang 471023, China
3 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 740048, China
下载:  全 文 ( PDF ) ( 4878KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本研究对均匀化后的Mg-11Gd-3Y-xZn-0.5Zr(x=0, 0.3, 0.7, 1.5,质量分数/%)合金进行温度为350~500 ℃、应变速率为0.002~1 s-1的热压缩实验,对合金显微组织进行分析,计算了合金的热变形激活能,构建并分析了合金的热加工图。结果表明:Mg-11Gd-3Y-xZn-0.5Zr合金热变形发生了动态回复和动态再结晶,峰值应力都随Zn含量的增加而增大;流变应力随温度的升高或应变速率的降低而升高。在应变量小于0.4时,流变应力随Zn含量增加而增加,当应变量达到0.4后流变应力随Zn含量增加先增加后降低,在Zn含量为0.7%时流变应力达到最大值;少量Zn(0.3%)的加入就能明显提高合金的热变形激活能,但进一步增加Zn的含量(0.3%~1.5%)对合金激活能几乎没有影响;通过热加工图确定了合金适合的热加工工艺范围;Zn元素能够减小合金失稳区范围,减缓合金再结晶进程的同时细化了合金组织,当Zn含量为0.7%时合金的可热加工性最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王颂博
李全安
陈晓亚
朱利敏
张帅
关海昆
关键词:  Mg-11Gd-3Y-xZn-0.5Zr合金  热压缩  激活能  热加工图    
Abstract: The homogenized Mg-11Gd-3Y-xZn-0.5Zr(x=0, 0.3, 0.7, 1.5, mass fraction/%) alloy was subjected to a hot compression experiment at temperature of 350—500 ℃ and strain rate of 0.002—1 s-1. The microstructure of the alloy was analyzed. The thermal deformation activation energy was established and the thermal processing map of the alloy was established and analyzed. The results showed that the thermal deformation and dynamic recrystallization of Mg-11Gd-3Y-xZn-0.5Zr alloy occur. The peak stress increases with the increase of Zn content. The flow stress increases with the increase of temperature or decreases of strain rate. When the strain is less than 0.4, the flow stress increases with the increase of Zn content. When the strain reaches 0.4, the flow stress increases first and then decreases with the increase of Zn content. When the Zn content is 0.7%, the flow stress reaches the maximum value. The addition of Zn (0.3%) can significantly improve the thermal deformation activation energy of the alloy, but further increase the Zn(0.3%—1.5%) has little effect on the activation energy of the alloy. The hot working process range of the alloy is determined by the thermal processing map. Zn can reduce the range of instability zone, slow down the alloy recrystallization process and refine the alloy structure. When the Zn content is 0.7%, the hot working effect is the best.
Key words:  Mg-11Gd-3Y-xZn-0.5Zr alloy    hot compression    activation energy    processing map
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51571084;51171059)
通讯作者:  qali@haust.edu.cn   
作者简介:  王颂博,河南科技大学,在读工程硕士。专业研究方向为先进镁合金,主要从事高性能镁合金的设计与开发。
李全安,河南科技大学,教授。目前主要从事稀土功能材料、稀土镁合金、稀土铝合金、稀土表面改性等研究。主持国家自然科学基金、河南省杰出人才基金、河南省杰出青年基金等项目10余项。发表研究论文300余篇,获国家发明专利授权20余项。
引用本文:    
王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
WANG Songbo, LI Quanan, CHEN Xiaoya, ZHU Limin, ZHANG Shuai, GUAN Haikun. Effect of Zn on Hot Compression Behavior of Mg-11Gd-3Y-0.5Zr Alloy. Materials Reports, 2021, 35(4): 4124-4128.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090111  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4124
1 Ding W J, Wu Y J, Peng L M, et al.Materials China, 2010, 29(8),37(in Chinese).
丁文江, 吴玉娟, 彭立明, 等. 中国材料进展, 2010, 29(8), 37.
2 Zeng R C, Cui L Y, Ke W.Acta Metallurgica Sinica, 2018,54(9), 1215(in Chinese).
曾荣昌, 崔蓝月, 柯伟. 金属学报, 2018, 54(9), 1215.
3 Chen Z H.Magnesium alloy,Chemical Industry Press, China,2004(in Chinese).
陈振华. 镁合金, 化学工业出版社, 2004.
4 Wang W, Zhang H, Wang Z D. Chinese Journal of Rare Metals, 2014, 38(1), 138(in Chinese).
王卫, 张鸿, 王自东. 稀有金属, 2014, 38(1), 138.
5 Wan Y C, Xiao H C, Jiang S N, et al.Materials Science & Engineering:A, 2014, 617, 243.
6 Tang C P, Zuo G L, Li Z Y, et al.Materials Reports A:Review Papers, 2018, 32(11), 3760(in Chinese).
唐昌平, 左国良, 李志云, 等. 材料导报:综述篇, 2018, 32(11),3760.
7 Zeng X Q.Rare Earth Information, 2016(2), 26(in Chinese).
曾小勤.稀土信息, 2016(2), 26.
8 Wu W X, Jin L, Dong J, et al.The Chinese Journal of Nonferrous Metals, 2011, 21(11),2709(in Chinese).
吴文祥, 靳丽, 董杰, 等. 中国有色金属学报, 2011, 21(11), 2709.
9 Xing Q Y, Meng L G, Yang S J, et al.Foundry, 2018, 67(4),317(in Chinese).
邢清源, 孟令刚, 杨守杰, 等. 铸造, 2018, 67(4), 317.
10 Tang Y, Li B, Tang H, et al.Materials Science and Engineering:A, 2015, 640, 287.
11 Pu Z J, Chen D J, Zhang K, et al. Materials Reports A:Review Papers, 2017, 31(4),79(in Chinese).
蒲治军, 陈东杰, 张奎, 等. 材料导报:综述篇, 2017, 31(4),79.
12 Lu R, Wang J, Chen Y, et al.Journal of Alloys and Compounds, 2015, 639, 541.
13 Xia X M, Xie R, Xue K M, et al.Journal of Plasticity Engineering, 2017, 24 (3), 78(in Chinese).
夏显明, 谢瑞, 薛克敏, 等.塑性工程学报, 2017, 24(3), 78.
14 Yao H, Wen J B, Xiong Y, et al.Rare Metal Materials and Engineering, 2019, 48(6),1982(in Chinese).
姚怀, 文九巴, 熊毅, 等. 稀有金属材料与工程, 2019, 48(6),1982.
15 Kwak T Y, Lim H K, Kim W J.Journal of Alloys and Compounds, 2015, 63, 417.
16 Yen Z R, Lu L W, Liu X Y, et al.The Chinese Journal of Nonferrous Metals, 2018, 28(8),1523(in Chinese).
尹振入, 卢立伟, 刘晓烨, 等. 中国有色金属学报, 2018, 28(8),1523.
17 Dang J Z, Jiang Z Z, Ren L B, et al.Rare Metal Materials and Enginee-ring, 2018, 47(4),1293(in Chinese).
党景涛, 江柱中, 任凌宝, 等. 稀有金属材料与工程, 2018, 47(4),1293.
18 Liu W C, Li Q A, Fu S L, et al. Foundry Technology, 2015, 36(2), 259(in Chinese).
刘文闯, 李全安, 付三玲, 等. 铸造技术, 2015, 36(2), 259.
19 Sellars C M, Mctegar W J.Acta Metallurgica, 1966, 14 (9),1136.
20 Peng J, Tong X S, Shang S L, et al. Rare Metal Materials and Enginee-ring, 2013, 42(8),1627(in Chinese).
彭建, 童小山, 尚守亮, 等.稀有金属材料与工程, 2013, 42(8), 1627.
21 Prasad Y V R K, Sasidhara S.Hot working guide: A compendium of processing maps,ASM Intertentional, Ohio,1997,pp.1.
22 Shalbafi M, Roumina R, Mahmudi R.Journal of Alloys and Compounds, 2017, 696,1269.
23 Zhu L M, Li Q A.Materials Reports B:Research Papers, 2018, 32(2), 593(in Chinese).
朱利敏, 李全安. 材料导报:研究篇, 2018, 32(2), 593.
[1] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[2] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[3] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[4] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[5] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[6] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[7] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[8] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[9] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[10] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[11] 崔凯, 虞澜, 刘安安, 秦梦, 宋世金, 沈艳. 具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应[J]. 材料导报, 2019, 33(20): 3363-3366.
[12] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[13] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[14] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[15] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed