Research Status and Trend of YSZ Thermal Barrier Coatings Doped with Rare Earth Oxides
WANG Pengcheng1,2, ZHAO Yuncai1,*, LIU Ming2,*, WANG Huipeng1, MA Guozheng2, WANG Haidou2
1 College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
Abstract: With the progress and development of science and technology, in the face of increasingly complex working environments, traditional yttria partially stabilized zirconia thermal barrier coating materials are prone to appear when they are used in an environment higher than 1 200 ℃. Problems such as phase transition and severe sintering shrinkage reduce the thermal insulation performance of the coating, and at the same time accelerate the peeling of the coating with a certain volume change. It is necessary to develop a better thermal barrier coating to adapt to the future working environment. The new generation of thermal barrier coatings are divided into the following categories: (i) doped rare earth oxide modified YSZ thermal barrier coatings; (ii) fluorite or pyrochlore structure thermal barrier coatings; (iii) yttrium aluminum garnet or magnetite heat Barrier coating; (iv) thermal barrier coating of perovskite structure. Among them, the thermal barrier coating modified by YSZ with rare earth oxide doping can effectively reduce the thermal conductivity of the thermal barrier coating, improve its high temperature phase stability, high temperature oxidation resistance, high temperature corrosion resistance, etc., which attracted the attention of scholars at home and abroad. This article mainly introduces several kinds of rare-earth oxide doped modified YSZ thermal barrier coatings that are currently expected to replace traditional YSZ coatings. Among them, rare-earth oxides include CeO2, Sc2O3, Gd2O3, La2O3, the physical and chemical properties, research status and existing problems of different rare earth oxide doped YSZ thermal barrier coating materials are reviewed. CeO2 doping can reduce the thermal conductivity of the coating, enhance its corrosion resistance to Na2SO4, and improve its thermal stability; Sc2O3doping can not only reduce the thermal conductivity of the coating, but also greatly improve its phase stability, making the coating at 1 500 ℃. The results show that the single t′ phase remains after long time heat treatment at high temperature; doping Gd2O3 can effectively improve the heat and corrosion resistance, but excessive doping will reduce the mechanical properties; doping La2O3 can enhance the sintering resistance of the coating, and effectively reduce its thermal conductivity. This paper also briefly introduces the research status of other factors (such aspulverizing method, spraying process, etc.) affecting the performance of rare earth oxide doped YSZ thermal barrier coating, summarizes the development trend and research ideas of thermal barrier coating system in the future, and provides a reference for the development of new thermal barrier coating.
王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
WANG Pengcheng, ZHAO Yuncai, LIU Ming, WANG Huipeng, MA Guozheng, WANG Haidou. Research Status and Trend of YSZ Thermal Barrier Coatings Doped with Rare Earth Oxides. Materials Reports, 2021, 35(9): 9069-9076.
1 Li D N. Materials technology of aeronautics, Aviation Industry Press, China,2013(in Chinese). 李东南.航空材料技术,航空工业出版社,2013. 2 Vassen R, Jarligo M O, Steinke T, et al. Surface & Coatings Technology,2010,205,938. 3 Padture N P. Nature Materials,2016,15,804. 4 Liu Z G, Ouyang J H, Zhou Y. Journal of Alloys and Compounds,2009,473,17. 5 Kumar V, Balasubramanian K. Progress in Organic Coatings,2016,90,54. 6 Mauer G, Jarligo M O, Mack D E, et al. Journal of Thermal Spray Technology,2013,6,646. 7 Tian W, He A J, Zhong Y, et al. Gas Turbine Experiment and Researc,2016,29(5),52(in Chinese). 田伟,何爱杰,钟燕等.燃气涡轮试验与研究,2016,29(5),52. 8 Lakiza S M, Grechanyuk M I, Ruban O K, et al. Powder Metallurgy and Metal Ceramic,2018,57(1-2),82. 9 Guo H B, Gong S K, Xu H B. Materials China,2009,28(9-10),18(in Chinese). 郭洪波,宫声凯,徐惠彬.中国材料进展,2009,28(9-10),18. 10 Cao X Q, Vassen R, Stoever D. Journal of the European Ceramic Society,2004,24(1),1. 11 Zhou F F, Wang Y, Wang L A, et al. Journal of Alloys and Compounds,2017,704,614. 12 Wang J S, Sun J B, Jing Q S, et al. Journal of the European Ceramic Society,2018,38(7),2841. 13 Chen H T, Chang J G. The Journal of Chemical Physics,2010,132,214702. 14 Gong W B, Li R W, Sun D Q, et al. Acta Metallurgica Sinica,2013,49(5),593(in Chinese). 宫文彪,李任伟,孙大千,等.金属学报,2013,49(5),593. 15 Li R W, Gong W B. Transactions of Materials And Heat Treatment,2016,37(3),145(in Chinese). 李任伟,宫文彪.材料热处理学报,2016,37(3),145. 16 Li R W, Huang F. Journal of Northeast Dianli University,2016,36(6),60(in Chinese). 李任伟,黄飞.东北电力大学学报,2016,36(6),60. 17 Jin L, Yu Q, Ni L Y, et al. Journal of Thermal Spray Technology,2012,21(5),928. 18 Khan M, Zeng Y, Lan Z H, et al. Ceramics International,2019,45,839. 19 Venkadesan G, Muthusamy J. Ceramics International,2019,45,3166. 20 Ashofteh A, Mashhadi M M, Amadeh A. Ceramics International,2018,1951. 21 Ghasemi R, Vakilifard H. Ceramics International,2017,43(12),8556. 22 Dong H, Yang G J, Cai H N, et al. Ceramics International,2015,41(9),11046. 23 Muhammet K, Emre B, Ayse K, et al. Surface & Coatings Technology,2016,52(2),175. 24 Wei P, Wei Z Y, Zhao G X, et al. High Temperature Materials and Processes,2015,35(8),77. 25 Jones R L. Surface & Coatings Technology,1989,39,89. 26 Jones R L, Reidy R F, Mess D. Surface & Coating Technology,1996,82,70. 27 Yoshimura M, Yashima M, Noma T, et al. Journal of Materials Science,1988,23(8),2689. 28 Fan W, Wang Z Z, Bai Y, et al. Journal of the European Ceramic Society,2018,38(13),4502. 29 Fan W, Bai Y, Liu Y F, et al. Ceramics International,2019,45,15763. 30 Loghman-estarki M R, Shoja-razavi R, Edris H, et al. Ceramics International,2016,42(6),7432. 31 Loghman-estarki M R, Hajizadeh-oghaz M, Edris H, et al. Ceramics International,2018,44(11),12042. 32 Li Q L, Liu H F. Thermal Spray Technology,2016,8(1),17(in Chinese). 李其连,刘怀菲.热喷涂技术,2016,8(1),17. 33 Ji X J, Gong S K, Xu H B, et al. Acta Aeronautica Et Astronautica Sinica,2007,28,196. 34 Wang Y X, Zhou C G. Ceramics International,2016,42(11),13047. 35 Wang Y X, Zhou C G. Progress in Natural Science: Materials Internatio-nal,2017,27(4),507. 36 Ilavsky J, Stalick J K, Wallace J. Thermal Spray Technology,2001,10,497. 37 Jin L, Jiang C Z, Xu H Y, et al. International Journal of Lightweight Materials and Manufacture,2019,2,261. 38 Matsumoto M, Aoyama K, Matsubara H, et al. Surface & Coatings Technology,2005,194,31. 39 Matsumoto M, Yamaguchi N, Matsubara H. Scripta Materialia,2004,50,867. 40 Liu Y, Gao Y F, Tao S Y, et al. Journal of Thermal Spray Technology,2008,17,603. 41 Liu Y, Gao Y F, Tao S Y,et al. Surface & Coatings Technology,2009,203(8),1014. 42 Liu H F, Xiong X, Wang Y L. Advances in Chemical Engineering and Advanced Materials IV,2014,1033,907. 43 Su Z F, Liu H F, Wang Y L. Acta Materiae Compositae Sinica,2015,32(5),1381(in Chinese). 苏正夫,刘怀菲,王雅雷.复合材料学报,2015,32(5),1381. 44 Nagaraju N, Raja-annamalai A. Materials Research Express,2019,6(7),076560. 45 Yoon S, Gwon D H, Dong Y J, et al. Journal of Alloys and Compounds,2019,806,1430. 46 Loghman-estarki M R, Shoja-razavi R, Edris H. Ceramics International,2013,39,9447. 47 Chen H L, Wang S L, Tang H Z. Journal of Functional Materials,2014,45(3),3037(in Chinese). 陈洪亮,王树林,唐宏志.功能材料,2014,45(3),3037. 48 Meng X M, Ye W P, Cheng X D, et al. Materials Science and Technology,2013,21(3),143(in Chinese). 孟晓明,叶卫平,程旭东,等.材料科学与工艺,2013,21(3),143. 49 Bai Y, Han Z H, Li H Q, et al. Surface & Coatings Technology,2011,205(13),3833. 50 Tang J J, Bai Y, Wang J W, et al. Materials Letters,2016,182,181. 51 Zhang P P, Zhang X F, Li F H, et al. Journal Thermal Spray Technology,2019,6,1225. 52 Zhou Z J, Xu L, Du Y B, et al. Journal of Chongqing Technology and Business University (Natural Science Edition),2021,38(2),69(in Chinese). 周志杰,许磊,杜彦斌,等.重庆工商大学学报(自然科学版),2021,38(2),69.