Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9069-9076    https://doi.org/10.11896/cldb.19090120
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势
王鹏程1,2, 赵运才1,*, 刘明2,*, 王慧鹏1, 马国政2, 王海斗2
1 江西理工大学机电工程学院,赣州 341000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Status and Trend of YSZ Thermal Barrier Coatings Doped with Rare Earth Oxides
WANG Pengcheng1,2, ZHAO Yuncai1,*, LIU Ming2,*, WANG Huipeng1, MA Guozheng2, WANG Haidou2
1 College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 8097KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科技的进步与发展,面对日趋复杂的工作环境,传统的氧化钇部分稳定的氧化锆(Yttria partially stabilized zirconia)热障涂层材料在高于1 200 ℃的环境下服役时,易出现相变、烧结收缩严重等问题,降低了涂层的隔热性能,同时伴随有一定的体积变化而加速涂层的剥落,需要研发性能更好的热障涂层以适应未来的工作环境。新一代热障涂层分为以下几类:(1)掺杂稀土氧化物改性YSZ热障涂层;(2)萤石或焦绿石结构热障涂层;(3)钇铝石榴石或磁铁铅矿热障涂层;(4)钙钛矿结构热障涂层。其中,采用稀土氧化物掺杂对YSZ进行改性的热障涂层由于可以有效降低热障涂层的热导率,提高其高温相稳定性、高温抗氧化性、高温抗腐蚀性能等而引起国内外学者的关注。
本文主要介绍了目前几种有希望代替传统YSZ涂层的稀土氧化物掺杂改性YSZ热障涂层,稀土氧化物包括CeO2、Sc2O3、Gd2O3、La2O3,对不同稀土氧化物掺杂改性YSZ热障涂层材料的物理化学性质、研究现状及存在的问题进行了综述。其中掺杂CeO2可降低涂层的热导率,使其耐Na2SO4腐蚀能力增强,并提高其热稳定性;掺杂Sc2O3不仅降低涂层的热导率,还大大提高其相稳定性,使涂层在1 500 ℃高温下经过长时间热处理后仍然保持单一的t′相;掺杂Gd2O3可有效提高其耐热腐蚀性,但过量掺杂会降低涂层的力学性能;掺杂La2O3可增强涂层的抗烧结能力,有效降低其热导率。
本文还对影响稀土氧化物掺杂改性YSZ热障涂层性能的其他因素(如制粉方式、喷涂工艺等)的研究现状进行了简单的介绍,对今后热障涂层体系的发展趋势及研发思路进行总结,为新型热障涂层的研制提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏程
赵运才
刘明
王慧鹏
马国政
王海斗
关键词:  热障涂层  稀土氧化物  热导率  氧化钇部分稳定的氧化锆(YSZ)    
Abstract: With the progress and development of science and technology, in the face of increasingly complex working environments, traditional yttria partially stabilized zirconia thermal barrier coating materials are prone to appear when they are used in an environment higher than 1 200 ℃. Problems such as phase transition and severe sintering shrinkage reduce the thermal insulation performance of the coating, and at the same time accelerate the peeling of the coating with a certain volume change. It is necessary to develop a better thermal barrier coating to adapt to the future working environment. The new generation of thermal barrier coatings are divided into the following categories: (i) doped rare earth oxide modified YSZ thermal barrier coatings; (ii) fluorite or pyrochlore structure thermal barrier coatings; (iii) yttrium aluminum garnet or magnetite heat Barrier coating; (iv) thermal barrier coating of perovskite structure. Among them, the thermal barrier coating modified by YSZ with rare earth oxide doping can effectively reduce the thermal conductivity of the thermal barrier coating, improve its high temperature phase stability, high temperature oxidation resistance, high temperature corrosion resistance, etc., which attracted the attention of scholars at home and abroad.
This article mainly introduces several kinds of rare-earth oxide doped modified YSZ thermal barrier coatings that are currently expected to replace traditional YSZ coatings. Among them, rare-earth oxides include CeO2, Sc2O3, Gd2O3, La2O3, the physical and chemical properties, research status and existing problems of different rare earth oxide doped YSZ thermal barrier coating materials are reviewed. CeO2 doping can reduce the thermal conductivity of the coating, enhance its corrosion resistance to Na2SO4, and improve its thermal stability; Sc2O3doping can not only reduce the thermal conductivity of the coating, but also greatly improve its phase stability, making the coating at 1 500 ℃. The results show that the single t′ phase remains after long time heat treatment at high temperature; doping Gd2O3 can effectively improve the heat and corrosion resistance, but excessive doping will reduce the mechanical properties; doping La2O3 can enhance the sintering resistance of the coating, and effectively reduce its thermal conductivity.
This paper also briefly introduces the research status of other factors (such aspulverizing method, spraying process, etc.) affecting the performance of rare earth oxide doped YSZ thermal barrier coating, summarizes the development trend and research ideas of thermal barrier coating system in the future, and provides a reference for the development of new thermal barrier coating.
Key words:  thermal barrier coatings    rare earth oxide    thermal conductivity    yttria stabilized zirconia (YSZ)
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  V259  
基金资助: 国家自然科学基金(51675531; 51535011;51965023),北京市自然科学基金 (3172038);“十三五”装备预研项目(41423060315);装发-教育部联合基金(6141A02033120)
通讯作者:  Zhaoyuncai@126.com;hzaam@163.com   
作者简介:  王鹏程,江西理工大学硕士研究生,主要研究方向为热障涂层。
赵运才,博士,教授,硕士研究生导师,江西省中青年学科带头人。在等离子喷涂润滑耐磨涂层的制备及其磨损失效机理,重熔工艺技术参数对金属陶瓷涂层微观组织结构的演绎过程及其摩擦学性能的演变规律,超声滚压处理表层特性变化、残余应力分布以及摩擦学性能,多形织构界面摩擦特性及润滑数值模拟等方面进行过系统的研究和探索。在如何提高等离子喷涂耐磨涂层的摩擦与润滑性能上形成了自己的一些思想方法,揭示了涂层显微结构与表面纹理织构耦合的低摩擦效应及其机理,解决了不同凹槽类织构及多种凹坑类织构的摩擦润滑性能中一些有一定深度的问题,并提出了一种全新的表面凹坑类织构:矩形织构。近年来,先后主持国家自然科学基金地区科学基金项目2项,省、部级自然科学研究项目6项,主持江西恒大高新技术股份有限公司、江西耐普新材料有限责任公司、中国铝业集团和杭州钢铁有限股份公司等大型企业科研协作项目7项。发表论文60余篇,其中SCI收录6篇,EI收录20篇。出版学术专著1部。已授权相关实用新型专利3项。独立指导硕士研究生21人。
刘明,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于陆军装甲兵学院,2018年12月在陆军装甲兵学院装备保障与再制造系取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持装发预研重点基金项目1项、武器装备预研基金项目2项、获军队科技进步二等奖2项。授权国家(国防)发明专利10余项,发表论文40余篇。
引用本文:    
王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
WANG Pengcheng, ZHAO Yuncai, LIU Ming, WANG Huipeng, MA Guozheng, WANG Haidou. Research Status and Trend of YSZ Thermal Barrier Coatings Doped with Rare Earth Oxides. Materials Reports, 2021, 35(9): 9069-9076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090120  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9069
1 Li D N. Materials technology of aeronautics, Aviation Industry Press, China,2013(in Chinese).
李东南.航空材料技术,航空工业出版社,2013.
2 Vassen R, Jarligo M O, Steinke T, et al. Surface & Coatings Technology,2010,205,938.
3 Padture N P. Nature Materials,2016,15,804.
4 Liu Z G, Ouyang J H, Zhou Y. Journal of Alloys and Compounds,2009,473,17.
5 Kumar V, Balasubramanian K. Progress in Organic Coatings,2016,90,54.
6 Mauer G, Jarligo M O, Mack D E, et al. Journal of Thermal Spray Technology,2013,6,646.
7 Tian W, He A J, Zhong Y, et al. Gas Turbine Experiment and Researc,2016,29(5),52(in Chinese).
田伟,何爱杰,钟燕等.燃气涡轮试验与研究,2016,29(5),52.
8 Lakiza S M, Grechanyuk M I, Ruban O K, et al. Powder Metallurgy and Metal Ceramic,2018,57(1-2),82.
9 Guo H B, Gong S K, Xu H B. Materials China,2009,28(9-10),18(in Chinese).
郭洪波,宫声凯,徐惠彬.中国材料进展,2009,28(9-10),18.
10 Cao X Q, Vassen R, Stoever D. Journal of the European Ceramic Society,2004,24(1),1.
11 Zhou F F, Wang Y, Wang L A, et al. Journal of Alloys and Compounds,2017,704,614.
12 Wang J S, Sun J B, Jing Q S, et al. Journal of the European Ceramic Society,2018,38(7),2841.
13 Chen H T, Chang J G. The Journal of Chemical Physics,2010,132,214702.
14 Gong W B, Li R W, Sun D Q, et al. Acta Metallurgica Sinica,2013,49(5),593(in Chinese).
宫文彪,李任伟,孙大千,等.金属学报,2013,49(5),593.
15 Li R W, Gong W B. Transactions of Materials And Heat Treatment,2016,37(3),145(in Chinese).
李任伟,宫文彪.材料热处理学报,2016,37(3),145.
16 Li R W, Huang F. Journal of Northeast Dianli University,2016,36(6),60(in Chinese).
李任伟,黄飞.东北电力大学学报,2016,36(6),60.
17 Jin L, Yu Q, Ni L Y, et al. Journal of Thermal Spray Technology,2012,21(5),928.
18 Khan M, Zeng Y, Lan Z H, et al. Ceramics International,2019,45,839.
19 Venkadesan G, Muthusamy J. Ceramics International,2019,45,3166.
20 Ashofteh A, Mashhadi M M, Amadeh A. Ceramics International,2018,1951.
21 Ghasemi R, Vakilifard H. Ceramics International,2017,43(12),8556.
22 Dong H, Yang G J, Cai H N, et al. Ceramics International,2015,41(9),11046.
23 Muhammet K, Emre B, Ayse K, et al. Surface & Coatings Technology,2016,52(2),175.
24 Wei P, Wei Z Y, Zhao G X, et al. High Temperature Materials and Processes,2015,35(8),77.
25 Jones R L. Surface & Coatings Technology,1989,39,89.
26 Jones R L, Reidy R F, Mess D. Surface & Coating Technology,1996,82,70.
27 Yoshimura M, Yashima M, Noma T, et al. Journal of Materials Science,1988,23(8),2689.
28 Fan W, Wang Z Z, Bai Y, et al. Journal of the European Ceramic Society,2018,38(13),4502.
29 Fan W, Bai Y, Liu Y F, et al. Ceramics International,2019,45,15763.
30 Loghman-estarki M R, Shoja-razavi R, Edris H, et al. Ceramics International,2016,42(6),7432.
31 Loghman-estarki M R, Hajizadeh-oghaz M, Edris H, et al. Ceramics International,2018,44(11),12042.
32 Li Q L, Liu H F. Thermal Spray Technology,2016,8(1),17(in Chinese).
李其连,刘怀菲.热喷涂技术,2016,8(1),17.
33 Ji X J, Gong S K, Xu H B, et al. Acta Aeronautica Et Astronautica Sinica,2007,28,196.
34 Wang Y X, Zhou C G. Ceramics International,2016,42(11),13047.
35 Wang Y X, Zhou C G. Progress in Natural Science: Materials Internatio-nal,2017,27(4),507.
36 Ilavsky J, Stalick J K, Wallace J. Thermal Spray Technology,2001,10,497.
37 Jin L, Jiang C Z, Xu H Y, et al. International Journal of Lightweight Materials and Manufacture,2019,2,261.
38 Matsumoto M, Aoyama K, Matsubara H, et al. Surface & Coatings Technology,2005,194,31.
39 Matsumoto M, Yamaguchi N, Matsubara H. Scripta Materialia,2004,50,867.
40 Liu Y, Gao Y F, Tao S Y, et al. Journal of Thermal Spray Technology,2008,17,603.
41 Liu Y, Gao Y F, Tao S Y,et al. Surface & Coatings Technology,2009,203(8),1014.
42 Liu H F, Xiong X, Wang Y L. Advances in Chemical Engineering and Advanced Materials IV,2014,1033,907.
43 Su Z F, Liu H F, Wang Y L. Acta Materiae Compositae Sinica,2015,32(5),1381(in Chinese).
苏正夫,刘怀菲,王雅雷.复合材料学报,2015,32(5),1381.
44 Nagaraju N, Raja-annamalai A. Materials Research Express,2019,6(7),076560.
45 Yoon S, Gwon D H, Dong Y J, et al. Journal of Alloys and Compounds,2019,806,1430.
46 Loghman-estarki M R, Shoja-razavi R, Edris H. Ceramics International,2013,39,9447.
47 Chen H L, Wang S L, Tang H Z. Journal of Functional Materials,2014,45(3),3037(in Chinese).
陈洪亮,王树林,唐宏志.功能材料,2014,45(3),3037.
48 Meng X M, Ye W P, Cheng X D, et al. Materials Science and Technology,2013,21(3),143(in Chinese).
孟晓明,叶卫平,程旭东,等.材料科学与工艺,2013,21(3),143.
49 Bai Y, Han Z H, Li H Q, et al. Surface & Coatings Technology,2011,205(13),3833.
50 Tang J J, Bai Y, Wang J W, et al. Materials Letters,2016,182,181.
51 Zhang P P, Zhang X F, Li F H, et al. Journal Thermal Spray Technology,2019,6,1225.
52 Zhou Z J, Xu L, Du Y B, et al. Journal of Chongqing Technology and Business University (Natural Science Edition),2021,38(2),69(in Chinese).
周志杰,许磊,杜彦斌,等.重庆工商大学学报(自然科学版),2021,38(2),69.
[1] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[2] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[3] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[4] 廖圣俊, 周立娟, 尹凯俐, 王建军, 姜常玺. 高导热氮化硅陶瓷基板研究现状[J]. 材料导报, 2020, 34(21): 21105-21114.
[5] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[6] 李颖, 李成功, 后振中, 张亮, 杨庆浩, 刘心怡. 本征型导热液晶聚合物的制备及导热模型构建:一种提升聚合物基体热导率的方法[J]. 材料导报, 2020, 34(10): 10192-10196.
[7] 刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
[8] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[9] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[10] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[11] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[12] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[13] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[14] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[15] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed