Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9077-9082    https://doi.org/10.11896/cldb.20050047
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
多因素对再生复合掺料基地聚物混凝土抗压强度的影响
代金芯1,2, 石宵爽1,2,*, 王清远1,2,3,*, 张红恩1,2, 栾晨晨1,2, 张宽裕1,2, 杨富花1,2
1 四川大学建筑与环境学院,深地科学与工程教育部重点实验室, 成都 610065
2 四川大学建筑与环境学院, 破坏力学与工程防灾减灾四川省重点实验室,成都 610065
3 成都大学机械工程学院, 成都 610106
Effect of Multi-factor on the Compressive Strength of Construction and Demolition Waste Based Geopolymer Concrete
DAI Jinxin1,2, SHI Xiaoshuang1,2,*, WANG Qingyuan1,2,3,*, ZHANG Hong'en1,2, LUAN Chenchen1,2, ZHANG Kuanyu1,2, YANG Fuhua1,2
1 MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2 Failure Mechanics and Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
3 Department of Mechanical Engineering, Chengdu University, Chengdu 610106, China
下载:  全 文 ( PDF ) ( 7926KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 大量的建筑废弃物给环境带来了严重负担,本工作利用建筑废弃物制备而成的再生复合掺料替代地聚物混凝土中的粉煤灰,以实现建筑废弃物的再生利用。试验研究了养护条件、氢氧化钠浓度以及再生复合掺料替代率对再生复合掺料基地聚物混凝土抗压强度的影响,并利用SEM对混凝土微观形貌进行对比分析。研究结果表明,再生复合掺料对地聚物混凝土的和易性有不利影响,但与基准混凝土相比,替代率为20%~60%(质量分数,下同)的再生复合掺料基地聚物混凝土的抗压强度有所提高。高温养护能提高混凝土的抗压强度,与常温养护相比,3 d、7 d和28 d抗压强度分别平均提高了198.5%、104.0%和52.6%。氢氧化钠浓度对不同替代率的再生复合掺料基地聚物混凝土的影响不同,在低替代率(0%~40%)时,混凝土抗压强度随氢氧化钠浓度的增加而增加;在高替代率(60%~100%)时,混凝土抗压强度随氢氧化钠浓度的增加先增加后降低。因此再生复合掺料应用于地聚物混凝土中部分替代粉煤灰是可行的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代金芯
石宵爽
王清远
张红恩
栾晨晨
张宽裕
杨富花
关键词:  再生复合掺料  粉煤灰  地聚物混凝土  抗压强度  常温养护    
Abstract: Alarge amount of construction and demolition waste (CDW) has caused a serious burden on the environment. This paper utilized construction and demolition waste composites from CDW to replace fly ash in the geopolymer concrete. The effects of curing conditions, alkali activator concentrations and the replacement rates of construction and demolition waste composites on the compressive strength of construction and demolition waste based geopolymer concrete (CDW-GC) were investigated. Scanning electron microscope (SEM) was used to study the microstructure performance of these samples. Results obtained showed that construction and demolition waste composites had a negative effect on the workability of geopolymer concrete, but the compressive strength of CDW-GC with replacement rates of 20%—60% was improved compared with the reference concrete. Compared with curing at ambient temperature, the 3 d, 7 d and 28 d compressive strength increased by 198.5%, 104.0% and 52.6% while curing at high temperature for 24 h. The effect of alkali activator concentrations on CDW-GC was related to the replacement rates of construction and demolition waste composites. With the low replacement rates (0%—40%), the compressive strength increased with the increase of alkali activator concentrations. While with the high replacement rates (60%—100%), the compressive strength first increased and then decreased. It is feasible to use construction and demolition waste composites to partially replace fly ash in geopolymer concrete.
Key words:  construction and demolition waste composites    fly ash    geopolymer concrete    compressive strength    ambient temperature curing
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TU528  
通讯作者:  shixs@scu.edu.cn;wangqy@scu.edu.cn   
作者简介:  代金芯,2018年9月起至今于四川大学建筑与环境学院攻读硕士学位,主要从事固废物资源化利用研究。已申请发明专利1项。
石宵爽,副教授,硕士研究生导师,2011年12月毕业于四川大学建筑与环境学院,获得博士研究生学位。主要从事新型混凝土材料的多尺度研究。在国内外重要期刊发表文章40多篇。
王清远,教授,博士研究生导师,1998年7月毕业于法国巴黎中央大学(又译名巴黎中央理工学院,法文:Ecole Centrale Paris,现并入 Universite Paris-Saclay巴黎萨克雷大学),获得博士学位。主要从事新型材料与结构力学问题、超长寿命疲劳与可靠性及建筑垃圾资源化利用等方面的研究。发表Web of Science 收录论文200余篇,被他人引用3 000余篇次,2014—2019连续六年入选Elsevier中国高被引学者。
引用本文:    
代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
DAI Jinxin, SHI Xiaoshuang, WANG Qingyuan, ZHANG Hong'en, LUAN Chenchen, ZHANG Kuanyu, YANG Fuhua. Effect of Multi-factor on the Compressive Strength of Construction and Demolition Waste Based Geopolymer Concrete. Materials Reports, 2021, 35(9): 9077-9082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050047  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9077
1 Chen W, Zhu Z. Advances in Materials Science and Engineering, DDI: 10.1155/2018/4793917.
2 Huseien G F, Hamzah H K, Mohd Sam A R, et al. Journal of Cleaner Production,2020,243,118636.
3 Huntzinger D N, Eatmon T D. Journal of Cleaner Production,2009,17(7),668.
4 Torres-Carrasco M, Rodríguez-Puertas C, Alonso M D M, et al. Boletín de la Sociedad Española de Cerámica y Vidrio,2015,54(2),45.
5 Turner L K, Collins F G. Construction and Building Materials,2013,43,125.
6 Vieira D R, Calmon J L, Coelho F Z. Construction and Building Mate-rials,2016,124,656.
7 Palomo A, Grutzeck M W, Blanco M T, et al. Cement and Concrete Research,1999,29(8),1323.
8 Khale D, Chaudhary R. Journal of Materials Science,2007,42(3),729.
9 Duxson P, Provis J L, Lukey G C, et al. Cement and Concrete Research,2007,37(12),1590.
10 Cristelo N, Fernández-Jiménez A, Vieira C, et al. Construction and Building Materials,2018,170,26.
11 Chinabaogao. Development status of construction and demolition waste treatment industry in China in 2019, the production of construction and demolition waste is increasingly serious[Z/OL].[2019-03-11]. http://free.chinabaogao.com/gonggongfuwu/201903/03114043502019.html.(in Chinese).
中国报告网.2019年中国建筑垃圾处理行业发展现状:建筑垃圾产量日趋严重[Z/OL].[2019-03-11].http://free.chinabaogao.com/gonggongfuwu/201903/03114043502019.html.
12 Qianzhan industry research institute. Analysis of China's construction and demolition waste treatment industry in 2018: garbage output exceeded 2 billion tons, and there is broad space for future development[Z/OL].[2018-12-28]. https://bg.qianzhan.com/report/detail/459/181228-0c3486f5.html. (in Chinese).
前瞻产业研究院.2018年中国建筑垃圾处理行业分析:垃圾产量超20亿吨,未来发展空间广阔[Z/OL].[2018-12-28].https://bg.qianzhan.com/report/detail/459/181228-0c3486f5.html.
13 Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste, Official Journal of the European Union, EU 2008.
14 Tuyan M, Andiç-Çakir Ö, Ramyar K. Composites Part B: Engineering,2018,135,242.
15 Komnitsas K, Zaharaki D, Vlachou A, et al. Advanced Powder Technology,2015,26(2),368.
16 Panizza M, Natali M, Garbin E, et al. Construction and Building Mate-rials,2018,181,119.
17 Ahmari S, Ren X, Toufigh V, et al. Construction and Building Materials,2012,35,718.
18 Allahverdi A, Kani E N. Handbook of Recycled Concrete and Demolition Waste,2013,22(3),439.
19 Reig L, Tashima M M, Borrachero M V, et al. Construction and Building Materials,2013,43,98.
20 Silva G, Castañeda D, Kim S, et al. Construction and Building Mate-rials,2019,215,633.
21 Bassani M, Tefa L, Coppola B, et al. Journal of Cleaner Production,2019,234,71.
22 Rakhimova N R, Rakhimov R Z. Materials & Design,2015,85,324.
23 Vásquez A, Cárdenas V, Robayo R A, et al. Advanced Powder Technology,2016,27(4),1173.
24 Hwang C, Yehualaw M D, Vo D, et al. Construction and Building Materials,2019,223,657.
25 Kourti I, Rani D A, Deegan D, et al. Journal of Hazardous Materials,2010,176(1-3),704.
26 Zawrah M F, Gado R A, Feltin N, et al. Process Safety and Environmental Protection,2016,103,237.
27 Jaarsveld J, Deventer J, Lukey G C. Chemical Engineering Journal,2002,89(1-3),63.
28 Deventer J, Provis J L, Duxson P, et al. Journal of Hazardous Materials,2007,139(3),506.
29 Van Mier J. Fracture processes of concrete, CRC Press, the United States,1996.
30 Robayo-Salazar R A, Rivera J F, Mejía De Gutiérrez R. Construction and Building Materials,2017,149,130.
31 Lampris C, Lupo R, Cheeseman C R. Waste Management,2009,29(1),368.
32 Bian Z, Ge Q Y. Journal of Chongqing Technology and Business University (Natural Science Edition),2018,35(2),94(in Chinese).
卞祝,葛清蕴.重庆工商大学学报(自然科学版),2018,35(2),94.
33 Hwang C L, Yehualaw M D, Vo D H, et al. Construction and Building Meterials,2019,218,519.
[1] 刘攀攀, 聂轶苗, 夏淼, 王玲, 刘淑贤, 王森, 王迎春, 刘朔宇, 翟培鑫. 三种粉煤灰的碱溶出特性及制备矿物聚合物的研究进展[J]. 材料导报, 2021, 35(Z1): 639-643.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[4] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[5] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[6] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[7] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[8] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[9] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[10] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[11] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[12] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[13] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[14] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[15] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed