Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12092-12098    https://doi.org/10.11896/cldb.20060195
  无机非金属及其复合材料 |
固井水泥石孔隙结构演变及力学强度发展规律
郑少军1,2, 刘天乐1,2, 高鹏3, 蒋国盛1,2, 冯颖韬4, 李丽霞1,2, 陈宇4
1 中国地质大学工程学院,武汉 430074
2 中国地质大学非常规固井与特种加固实验室,武汉 430074
3 华南理工大学材料科学与工程学院,广州 510640
4 中海油田服务股份有限公司油田化学研究院,三河 065201
Pore Structure Evolution and Strength Development of Set Cement
ZHENG Shaojun1,2, LIU Tianle1,2, GAO Peng3, JIANG Guosheng1,2, FENG Yingtao4, LI Lixia1,2, CHEN Yu4
1 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2 Unconventional Cementing and Special Strengthening Laboratory, China University of Geosciences, Wuhan 430074, China
3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
4 Oilfield Chemistry R&D Institute, COSL, Sanhe 065201, China
下载:  全 文 ( PDF ) ( 3947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究以水泥水化数值模拟模型HYMOSTRUC3D为基础,建立了固井水泥浆水化模型,获取了固井水泥石的CH含量和抗压强度,并分别与实验所得固井水泥石的CH含量和抗压强度进行对比,模拟结果与实验结果的偏差分别为0.7%~8.7%和0.5%~10.7%,结果吻合较好,验证了所建模型的准确性。然后,基于所建模型探究了水泥矿物成分(C3S、C2S、C3A和C4AF)、水化产物(C-S-H和CH)、孔隙率、孔径分布等随水灰比和水化龄期的变化关系,并在Para View中重建了水泥石三维微结构。此外,分别采用Ryshkewitch方程、Schiller方程和二次线性方程探讨了水泥石的抗压强度与总孔隙率、毛细孔隙率的变化关系。研究结果表明:(1)水泥水化过程中,固井水泥石的孔隙率逐渐减小,孔径分布逐渐变窄,抗压强度逐渐增大;随水灰比的增大,孔隙率相应增大,孔径分布范围变宽,抗压强度减小。(2)水泥石的抗压强度与总孔隙率、毛细孔隙率呈负相关,采用Ryshkewitch方程、Schiller方程和二次线性方程分别拟合水泥石的抗压强度与总孔隙率、毛细孔隙率的关系,拟合决定性系数R2分别为0.92、0.85、0.91和0.97、0.95、0.97。(3)相比于Schiller方程和二次线性方程,Ryshkewitch方程在研究水泥石抗压强度与总孔隙率、毛细孔隙率的关系时更具普适性,毛细孔隙率是决定抗压强度的主要因素。(4)可采用y=191.5e-0.074x开展固井水泥浆抗压强度发展和毛细孔隙率变化规律的预测和研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑少军
刘天乐
高鹏
蒋国盛
冯颖韬
李丽霞
陈宇
关键词:  HYMOSTRUC3D模型  固井水泥石  CH含量  抗压强度  孔隙率  孔径分布    
Abstract: Pore structure development law of set cement can provide a crucial reference for cementing process design and cementing quality evaluation. Herein, based on the cement hydration numerical simulation model HYMOSTRUC3D, a novel set cement hydration model was established, the CH content and compressive strength of set cement were obtained to compare the tested results of XRD and the mechanical testing machine respectively, where the deviations between the simulation results and the experimental results were 0.7%—8.7% and 0.5%—10.7%, respectively. The results were in good agreement, which verified the accuracy of the model. Then, based on the established model, the mineral components (C3S, C2S, C3A and C4AF), hydration products (C-S-H and CH), porosity and pore size distribution, etc. with water-cement ratio as well as hydration age, besides a three-dimensional microstructure of set cement was reconstructed in Para View. In addition, Ryshkewitch function, Schiller function and quadratic linear function were chosen to fit the relationship between compressive strength and the total porosity or the capillary porosity, respectively. The results show that:(1)the porosity gradually decreases, the pore size distribution gradually narrows and the compressive strength gradually increases during the cement hydration process. With the increase of water to cement ratio, the porosity increases, the wide range of pore size distribution increases, and the compressive strength decreases. (2)The compressive strength of set cement is negatively correlated with total porosity or capillary porosity, Ryshkewitch function, Schiller function and quadratic linear function are used to fit the relationship between compressive strength and total porosity or to fit the relationship between compressive strength and capillary porosity, while the fitting determination coefficients are 0.92, 0.85, 0.91 and 0.97, 0.95, 0.97 respectively. (3)Compared with Schiller function and quadratic linear function, Ryshkewitch function is more universal to study the relationship between compressive strength and total porosity or capillary poro-sity. Capillary porosity is the main factor that determines the compressive strength of set cement. (4)y=191.5e-0.074x can be used to predict and study the relationship between compressive strength and capillary porosity.
Key words:  HYMOSTRUC3D model    set cement    the content of CH    compressive strength    porosity    pore size distribution
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TE256  
基金资助: 国家重点研发计划项目(2016YFE0204300)
通讯作者:  liutianle2008@163.com   
作者简介:  郑少军,2016年6月毕业于中国地质大学(武汉),获得工学学士学位。现为中国地质大学(武汉)工程学院博士研究生,主要从事多场耦合作用下水泥基材料水化过程中微结构时空演变规律研究。
刘天乐,中国地质大学(武汉)副教授,入选湖北省“海外优秀博士引智计划”和江苏省“双创人才计划”。2013年6月毕业于俄罗斯圣彼得堡国立矿业大学,获得钻完井工程专业博士学位。同年加入中国地质大学工程学院工作至今,主要从事水泥基材料紧密堆积、非常规固井与特种加固技术的研究。主持或参与科研项目10余项,在国内外重要期刊发表文章30余篇,以第一完成人申报中国发明专利6项、俄罗斯发明专利8项,获教育部技术发明一等奖1项、湖北省自制实验仪器二等奖1项、俄罗斯圣彼得堡青年科技奖三等奖1项。
引用本文:    
郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
ZHENG Shaojun, LIU Tianle, GAO Peng, JIANG Guosheng, FENG Yingtao, LI Lixia, CHEN Yu. Pore Structure Evolution and Strength Development of Set Cement. Materials Reports, 2021, 35(12): 12092-12098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060195  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12092
1 Brandro N B, Roehl D, De A S, et al. Journal of Petroleum Science & Engineering, 2017, 157, 422.
2 Liu C J, Huang B Z, Xu T T, et al.Cement injection theory and application in oil and gas wells. Petroleum Industry Press, China,2001(in Chinese).
刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用,石油工业出版社, 2001.
3 Ghabezloo S, Sulem J, Guedon S, et al.Cement and Concrete Research, 2008, 38(12), 1424.
4 Tang J, Zhang C G, Zhang B X, et al.Petroleum Exploration and Deve-lopment, 2015, 43(3), 470(in Chinese).
唐军, 章成广, 张碧星, 等. 石油勘探与开发, 2015, 43(3), 470.
5 Wang R H, Wang C W, B Y H, et al.Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(1), 78(in Chinese).
王瑞和, 王成文, 步玉环, 等. 中国石油大学学报(自然科学版), 2008, 32(1), 78.
6 Zhou S M, Li G S, Wang Q C.Petroleum Exploration and Development, 2013, 40(1), 108(in Chinese).
周仕明, 李根生, 王其春. 石油勘探与开发, 2013, 40(1),108.
7 Fan K, Zhu W Q, Zhou D Y, et al.Acta Petrolei Sinica, 2015, 36(4),86(in Chinese).
范坤, 朱文卿, 周代余, 等. 石油学报, 2015, 36(4),86.
8 Dousti M R, Boluk Y, Bindiganavile V.Construction and Building Mate-rials, 2019, 205(30),457.
9 Lu S C, Wang X Y, Meng Z R, et al.RSC Advances, 2019, 9,26692.
10 Liu K Q, Cheng X W, Zhang X G, et al.Transport in Porous Media, 2018,124(2),471.
11 Wei T C, Cheng X W, Wang S Z, et al.Materials Reports, 2016(Z2),415(in Chinese).
韦庭丛, 程小伟, 王升正, 等. 材料导报,2016(Z2), 415.
12 Li L B, Zhang H M, Guo X Y, et al.Construction and Building Mate-rials, 2019, 227, 2.
13 Van Breugel K. Simulation of hydration and formation of structure in har-dening cement-based materials. Ph.D. Thesis, Delft University of Techno-logy, The Netherlands, 1991.
14 Van Breugel K. Cement & Concrete Research, 1992, 25(2), 319.
15 Konders E A B. Simulation of volume changes in hardening cement-based materials. Ph.D. Thesis, Delft University of Technology, The Netherlands, 1997.
16 Ye G. Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials. Ph.D. Thesis, Delft University of Technology, The Netherlands, 2003.
17 Gao P. Simulation of hydration and microstructure development of blended cements. Ph.D. Thesis, Delft University of Technology, The Netherlands, 2018.
18 Pandey S P, Sharma R L.Cement & Concrete Research, 2000, 30(1),19.
19 Kearsley E P, Wainwright P J.Cement and Concrete Research, 2002, 32(2),233.
20 Zhang M Z. Multiscale lattice Boltzmann-finite element modelling of transport properties in cement-based materials. Ph.D. Thesis, Delft University of Technology, The Netherlands, 2013.
21 Qian Z W, Schlangen E, Ye G, et al.Materiales de Construction, 2010, 60(297), 8.
22 Wang X Y, Lee H S.Construction & Building Materials, 2012, 28(1), 12.
23 Nguyen V T. Rice husk ash as a mineral admixture for ultra-high-perfor-mance concrete. Ph.D. Thesis, Delft University of Technology, The Nethe-rlands, 2011.
24 Jin X Y, Wang Y W, Tian Y, et al.Journal of Building Materials, 2014, 17(5), 862(in Chinese).
金贤玉, 王宇纬, 田野, 等. 建筑材料学报, 2014, 17(5),862.
25 Zhang M Z, Ye G, Van Breugel K.Materiales de Construccion, 2010, 60(300), 19.
26 Bentz D P, Garboczi E J.Cement and Concrete Research, 1991, 21, 325.
27 Bentz D P.Journal of the American Ceramic Society, 1997, 80(1), 5.
28 Zhao P Q, Liang C, Sun C K, et al.Materials Reports, 2019, 33(Z2), 646(in Chinese).
赵丕琪, 梁辰, 孙传奎, 等.材料导报, 2019, 33(Z2), 646.
29 Yu X, Yu C, Ran Q P, et al.Materials Reports B:Research Papers, 2019, 33(7), 2340(in Chinese).
余鑫, 于诚, 冉千平, 等. 材料导报:研究篇, 2019(7),2340.
30 Maekawa K, Ishida T, Kishi T. Journal of Advanced Concrete Technology, 2003, 1(2),91.
31 Zheng S J, Liu T L, Jiang G S, et al. Materials Reports B:Research Papers, 2020, 34(11),56.
郑少军, 刘天乐, 蒋国盛, 等. 材料导报:研究篇, 2020, 34(11),56.
32 Wu D J, She W, Miao C W, et al.Journal of Building Materials, 2020, 23(1), 15(in Chinese).
吴大江, 佘伟, 缪昌文, 等. 建筑材料学报, 2020, 23(1), 15.
33 Chan N, Young R C, Li S. Water Science & Technology, 2018, 77(6),1744.
34 Li Y X, Chen Y M, Wei J X, et al.Cement & Concrete Research, 2006, 36(9),1741.
[1] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[4] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[5] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[6] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[7] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[8] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[9] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[10] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[11] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[12] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[13] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[14] 郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
[15] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed