Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10192-10196    https://doi.org/10.11896/cldb.19050039
  高分子与聚合物基复合材料 |
本征型导热液晶聚合物的制备及导热模型构建:一种提升聚合物基体热导率的方法
李颖1, 李成功1, 后振中1, 张亮2, 杨庆浩1, 刘心怡1
1 西安科技大学材料科学与工程学院,西安 710054
2 西安交通大学医学院第一附属医院招标采供办公室,西安 710061
Preparation of Liquid Crystalline Polymer with Intrinsic Thermal Conductivity and Establishment of Thermal Conductivity Model:a Method of Increasing Polymer Matrix Thermal Conductivity
LI Ying1, LI Chenggong1, HOU Zhenzhong1, ZHANG Liang2, YANG Qinghao1, LIU Xinyi1
1 College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 Department of the Tender and Supply, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
下载:  全 文 ( PDF ) ( 3703KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 合成含有刚性液晶基元的液晶聚合物(LCP),利用完整的聚合物网络与液晶基元的取向有序来提高LCP分子链的有序排列,构建以微观有序结构为基础的声子传递互通网络,保证聚合物基体高热导率的实现。采用傅里叶变换红外光谱(FTIR)进行结构表征,偏光显微镜(POM)和差示扫描量热(DSC)仪进行液晶性能分析,扫描电镜(SEM)进行微观形貌分析,热重分析(TGA)仪进行热性能研究,并对LCP膜的导热性进行测试(λ=α·ρ·Cp)。结果表明,LCP1和LCP2均呈现出微观有序性,具有较高的热导率,分别为0.79 W/(m·K)和0.72 W/(m·K),且热导率随液晶基元含量的增加而有所提高。此外,LCP1和LCP2还具有较高的热稳定性,其熔点温度(Tm)和质量损失5%时的温度(Td(5wt%))最高分别为230 ℃和420.36 ℃。该结果丰富了本征型导热液晶聚合物的研究基础,扩大了液晶聚合物的应用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李颖
李成功
后振中
张亮
杨庆浩
刘心怡
关键词:  微观有序结构  高热导率  声子传递互通网络  侧链液晶聚合物    
Abstract: Liquid crystalline polymers (LCPs) containing rigid mesogenic monomer were synthesized. The ordered arrangement of molecular chain in LCP were increased via integrated networks of polymers and spontaneously ordered arrangement of mesogenic monomers. The phonon transmission interflow net based on microscopic-ordered structure was built and the high thermal conductivity of polymer matrix was ensured. Chemical structures were characterized by Fourier transform infrared (FTIR). Liquid crystalline properties were analyzed by polarizing optical microscope (POM) and differential scanning calorimetry (DSC). Microstructures were observed by scanning electron microscopy (SEM). Thermal conductivities were researched by thermogravimetric analysis (TGA). And the thermal conductivities of LCPs films were tested as following: λ=α·ρ·Cp. The results indicated that: LCP1 and LCP2 both exhibited microscopic-ordered structures and possessed high thermal conductivities, 0.79 W/(m·K) and 0.72 W/(m·K) respectively. The thermal conductivity increased with the increasing of mesogenic monomer content grafted into PMHS. In addition, LCP1 and LCP2 showed high thermal stabilities, the highest melting temperature (Tm) and 5% weight loss temperature (Td(5wt%)) reaches 230 ℃ and 420.36 ℃ respectively. Results enrich the research foundation of intrinsic thermal conductivity liquid crystalline polymers and expand the application of liquid crystalline polymers.
Key words:  microscopic-ordered structure    high thermal conductivity    phonon transmission interflow networks    side-chain liquid crystalline polymer
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TM211  
基金资助: 国家自然科学基金(51903207);陕西省重点研发计划项目(2018GY-115;2018GY-174);陕西省留学人员科技活动择优资助项目(2017030)
通讯作者:  杨庆浩,2009年取得西安交通大学材料科学与工程专业博士学位,现为西安科技大学副教授,硕士研究生导师,日本大阪大学应用化学专业特别研究员(2001—2002)。主要从事功能高分子复合材料和导电聚合物研究。
张亮,2014年取得西安科技大学材料工程专业硕士学位,现为西安交通大学医学院第一附属医院副主任技师。主要从事功能高分子材料、医工结合材料和材料测试方法的研究。15991685217@163.com; yangxjtu@hotmail.com   
作者简介:  李颖,2012年取得西北工业大学材料学博士学位,现为西安科技大学副教授,硕士研究生导师,美国加州州立大学访问学者。主要从事聚合物导热材料和高分子液晶相关的研究。
引用本文:    
李颖, 李成功, 后振中, 张亮, 杨庆浩, 刘心怡. 本征型导热液晶聚合物的制备及导热模型构建:一种提升聚合物基体热导率的方法[J]. 材料导报, 2020, 34(10): 10192-10196.
LI Ying, LI Chenggong, HOU Zhenzhong, ZHANG Liang, YANG Qinghao, LIU Xinyi. Preparation of Liquid Crystalline Polymer with Intrinsic Thermal Conductivity and Establishment of Thermal Conductivity Model:a Method of Increasing Polymer Matrix Thermal Conductivity. Materials Reports, 2020, 34(10): 10192-10196.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050039  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10192
1 Shrestha R, Li P F, Chatterjee B, et al. Nature Communications, 2018, 9(1), 1664.
2 Gong Y, Zhou W Y, Xu L. China Plastics, 2018, 32(5), 1(in Chinese).
龚莹,周文英,徐丽等.中国塑料, 2018,32(5),1.
3 Li Q, Chen L, Gadinski M R, et al. Nature, 2015, 523(7562), 576.
4 Hussain A R J, Alahyari A A, Eastman S A, et al. Applied Thermal Engineering, 2017,113, 1118.
5 Xu Y F, Wang X X, Zhou J W, et al. Nanotechnology, 2018, 4, 3031.
6 Yang Y, Huang X P, Cao Z Y, et al. Nano Energy, 2016, 22, 301.
7 Seshadri I, Esquenazi G L, Cardinal T, et al. Nanotechnology, 2016, 27(17), 175601.
8 Chen J, Huang X Y, Zhu Y K, et al. Advanced Functional Materials, 2017, 27, 1604754.
9 Kim K, Kim J. Composites Part B-Engineering, 2016, 93, 67.
10 Haffari M S, Liu M W, Palhares H G, et al. Journal of Polymer Science Part B Polymer Physics, 2016, 54, 457.
11 Chen W, Wang Z F, Zhi C Y, et al. Composites Science & Technology, 2016, 130, 63.
12 Li Y, Zhang L, Hou Z Z. Journal of Polymers and the Environment, 2017, 25(2),315.
13 Bai L, Zhao X, Bao R Y, et al. Journal of Materials Science, 2018, 53, 10543.
14 Luo D C, Huang C L, Huang Z. Journal of Heat Transfer, 2018, 140, 031302.
15 Tanaka S, Hojo F, Takezawa Y. American Chemical Society Omega, 2018, 3, 3562.
16 Hyeonuk Y, Akherul M I, Nam H Y, et al. Composites Science and Technology, 2017, 141(22), 99.
17 Mu L W, He J, Li Y F, et al. Journal of Physical Chemistry C, 2017, 121, 4204.
18 Tu R C, Liao Q W, Zeng L P, et al. Applied Physics Letters, 2017, 110, 101905.
19 Li Y, Zhang G C, Jiang Y, et al. Journal of Chemical Research, 2011, 35, 715.
20 Podsiadlo P, Amit K K, Ellen M A, et al. Science, 2007, 318, 80.
[1] 张万里, 郑刚, 孙斌, 陈卡凌, 沈翔. 乙烯-三氟氯乙烯共聚物的制备及其在电线电缆上的应用进展[J]. 材料导报, 2019, 33(Z2): 609-612.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed