Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21105-21114    https://doi.org/10.11896/cldb.19070139
  无机非金属及其复合材料 |
高导热氮化硅陶瓷基板研究现状
廖圣俊, 周立娟*, 尹凯俐, 王建军, 姜常玺
山东理工大学材料科学与工程学院,淄博 255049
Research Status of β-Si3N4 Ceramics Based on High Thermal Conductivity
LIAO Shengjun, ZHOU Lijuan*, YIN Kaili, WANG Jianjun, JIANG Changxi
College of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China
下载:  全 文 ( PDF ) ( 8474KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如AlN、Al2O3、BeO等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。
然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(m·K))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。
现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的Si粉作为起始原料,但是要避免在球磨的过程中引入氧杂质;另一方面,选用高纯度的α-Si3N4或者β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。
本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法;然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述;概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状;最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖圣俊
周立娟
尹凯俐
王建军
姜常玺
关键词:  半导体  陶瓷基板  氮化硅  热导率    
Abstract: In order to reduce environmental pollution and build a green economy, efficient use of electricity is becoming more and more important. Power electronic equipment is the key technology to achieve this goal, which has been widely used in wind power generation, hybrid vehicles, LED lighting and other fields. This also puts forward higher requirements for heat dissipation substrates in electronic devices. The shortcomings of traditional ceramic substrates, such as AlN, Al2O3 and BeO, are increasingly prominent, such as low theoretical thermal conductivity and poor mechanical properties, which seriously hinder their development. Compared with traditional ceramic substrate materials, silicon nitride ceramics gra-dually become the main heat dissipation materials for electronic devices due to its excellent theoretical thermal conductivity and good mechanical properties.
However, at present, the actual thermal conductivity of silicon nitride ceramics is still far lower than the theoretical value, and some high thermal conductivity silicon nitride ceramics in the world (>150 W/(m·K)) are still in the laboratory stage. The factors affecting the thermal conductivity of Si3N4 ceramics include lattice oxygen, crystal phase and grain boundary equality. Among them, oxygen atom becomes the main factor because the solid solution reaction will occur in the lattice to generate silicon vacancy and cause lattice distortion, which will cause phonon scattering and reduce the thermal conductivity of Si3N4 ceramics. In addition, the thermal conductivity of Si3N4 can also be affected to some extent by crystal phase transformation and crystal axis orientation. And how to realize the mass production of silicon nitride ceramic substrate is also a big problem.
At the present stage, with the continuous optimization of the preparation process, the actual thermal conductivity of silicon nitride ceramics is also continuously improved. In order to reduce the oxygen content of lattice, firstly, the oxygen content is reduced in the selection of raw materials. On the one hand, the Si powder with relatively low oxygen content is selected as the starting material, but the introduction of oxygen impurities in the process of ball-milling should be avoided. On the other hand, using high-purity α-Si3N4 or β-Si3N4 as a starting material can also reduce oxygen content. Secondly, selecting appropriate sintering additives can also improve the thermal conductivity by reducing the oxygen content. At present, more sintering additives are Y2O3-MgO, but oxygen impurities are inevitably introduced, so non-oxide sintering additives can be used to replace oxide sintering additives, such as YF3-MgO, MgF2-Y2O3, Y2Si4N6C-MgO, MgSiN2-YbF3, etc., which have also achieved very good results in improving the thermal conductivity. It is found that adding carbon to reduce the oxygen content can also achieve a good effect. By doping some carbon into the raw material powder, the raw material powder is placed in a reductive environment during nitriding and sintering, which promotes the elimination of oxygen. In addition, the thermal conductivity can be improved to some extent by adding seed and increasing sintering temperature to promote crystal phase transformation and by applying magnetic field to make grain grow directionally. In order to meet the size requirements of electronic devices, casting molding has become a key technology for large-scale preparation of silicon nitride ceramic substrates.
Starting from the main factors affecting the thermal conductivity, this paper mainly introduces three methods to improve the actual thermal conductivity, such as reducing the oxygen content in the crystal lattice, promoting the crystal phase transition and realizing the orientation of crystal axis. Then, it is pointed out that the casting molding is the key to prepare high thermal conductivity silicon nitride ceramics on a large scale. The sintering process of preparing high thermal conductivity silicon nitride ceramics is reviewed. Finally, the future research direction of silicon nitride high thermal conductivity ceramics is prospected.
Key words:  semiconductor    ceramic substrate    silicon nitride    thermal conductivity
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TQ174  
基金资助: 山东省自然科学基金(ZR2016EMM19);淄博校城融合发展计划(2018ZBXC261)
作者简介:  廖圣俊,2018年6月毕业于山东理工大学,获得工学学士学位。现为山东理工大学材料科学与工程学院硕士研究生,在周立娟副教授的指导下进行研究。目前主要研究领域为高导热氮化硅陶瓷基板材料。
周立娟,博士,山东理工大学材料科学与工程学院副教授,硕士研究生导师。2009年在哈尔滨工业大学取得博士学位,2016—2017年在美国纽约州立大学宾汉姆顿分校作访问学者。主要从事先进陶瓷及陶瓷基复合材料的研究工作,先后主持973子项目、山东省自然科学基金、淄博市校城融合发展计划等各类项目,发表论文20余篇,发明授权专利3项。
引用本文:    
廖圣俊, 周立娟, 尹凯俐, 王建军, 姜常玺. 高导热氮化硅陶瓷基板研究现状[J]. 材料导报, 2020, 34(21): 21105-21114.
LIAO Shengjun, ZHOU Lijuan, YIN Kaili, WANG Jianjun, JIANG Changxi. Research Status of β-Si3N4 Ceramics Based on High Thermal Conductivity. Materials Reports, 2020, 34(21): 21105-21114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070139  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21105
[1] Buttay C, Planson D, Allard B, et al. Materials Science & Engineering B, 2011, 176(4), 283.
[2] Lu H, Bailey C, Yin C. Microelectronics Reliability, 2009, 49(9), 1250.
[3] Sawaguchi A, Toda K, Nihara K. Journal of the American Ceramic Society, 1991, 74(5), 1142.
[4] Wang L, Qi Q, Wu H, et al. Journal of the American Ceramic Society, DOI:10.1111/jace.15240.
[5] Inagaki Y, Kondo N, Ohji T. Journal of the European Ceramic Society, 2002,22, 2489.
[6] Becher P F. Journal of the American Ceramic Society, 1991,74, 255.
[7] Hirao K, Zhou Y, Hyuga H, et al. Journal of the Korean Ceramic Society, 2012, 49(4), 380.
[8] Slack G A, Tanzilli R A, Pohl R O, et al. Journal of Physics & Chemistry of Solids, 1987,48, 641.
[9] Lee R R. Journal of the American Ceramic Society, 1991, 74(9), 2242.
[10] Huang D, Tian Z, Cui W, et al. Ceramics International, 2018, 44(16), 20556.
[11] Lee H M, Bharathi K, Kim D K. Advanced Engineering Materials, 2014, 16(6), 655.
[12] Homayoun J, Bahram A R, Mahdi F. Solid State Communications, 2018,282, 21.
[13] Ma B Y, Yu J K. Transactions of Nonferrous Metals Society of China, 2009, 19(5), 1222.
[14] Ma B Y, Yu J K, Liu T, et al. Refractories, 2009,43(5),343(in Chinese).
马北越, 于景坤, 刘涛, 等.耐火材料, 2009, 43(5), 343.
[15] Li Y, Xu Y G, Huang Z H, et al. Powder Technology, 2013, 246, 677.
[16] Jia H S, Li J Q, Niu R, et al. Ceramics International, 2018, 44(18), 23288.
[17] Haggerty J S, Lightfoot A. Ceramic Engineering and Science Proceedings, 2008,16, 475.
[18] Hirosaki N, Ogata S, Kocer C, et al. Physical Review B, 2002, 65(13), 134110.
[19] Xiang H M, Feng Z H, Li Z P. Nature, 2018,8, 14374.
[20] Hardie D, Jack K H. Nature, 1957, 180(4581), 332.
[21] Zerr A, Miehe G, Serghiou G, et al. Nature, 1999, 400 (6742), 340.
[22] Petzow G, Herrmann M. High Performance Non-Oxide Ceramics II, 2002, 25, 47.
[23] Lu H H, Huang J L. Ceramics International, 2001, 27(6), 621.
[24] Lee C H, Lu H H, Wang C A, et al. Journal of the American Ceramic Society, 2011, 94(4), 1182.
[25] Slack G A. Journal of Physics & Chemistry of Solids, 1973, 34(2), 321.
[26] Luo X T, Yuan R Z. Ordnance Material Science and Engineering, 1998(2), 33(in Chinese).
罗学涛, 袁润章.兵器材料科学与工程, 1998(2), 33.
[27] Zhang J S, Cao L H, Lin X L, et al. Chinese Journal of Materials Research, 1992(2), 158(in Chinese).
张劲松, 曹丽华, 林小利, 等. 材料研究学报, 1992(2), 158.
[28] Kuwabara A, Matsunaga K, Tanaka I. Physical Review B, DOI:10.1103/PhysRevB.78.064104.
[29] Yokota H, Abe H, Ibukiyama M. Journal of the European Ceramic Society, 2003, 23(10), 1751.
[30] Kitayama M, Hirao K, Tsuge A, et al. Journal of the American Ceramic Society, 2000, 83(8), 8.
[31] Kitayama M, Hirao K, Toriyama M, et al. Journal of the American Ceramic Society, 1999, 82(11), 8.
[32] Zhou Y, Zhu X, Hirao K, et al. International Journal of Applied Ceramic Technology, 2008, 5(2), 119.
[33] Zhu X, Zhou Y, Hirao K. Journal of the American Ceramic Society, 2010, 87(7), 1398.
[34] Zhou Y, Hyuga H, Kusano D, et al. Advanced Materials, 2011, 23(39), 4563.
[35] Park Y J, Park M J, Kim J M, et al. Journal of the European Ceramic Society, 2014, 34(5), 1105.
[36] Golla B R, Ko J W, Kim J M, et al. Journal of Alloys and Compounds, 2014, 595, 60.
[37] Guo W M, Wu L X, Ma T, et al. Journal of the European Ceramic Society, 2016, 36(16), 3919.
[38] Duan Y, Zhang J, Li X, et al. Ceramics International, 2018,44, 4375.
[39] Kim J M, Ko S I, Kim H N, et al. Ceramics International, 2017, 43(7), 5441.
[40] Liu X L, Ning X S, Yosuke T. Rare Metal Materials and Engineering, 2015, 44(S1), 270(in Chinese).
刘幸丽, 宁晓山, Yosuke T. 稀有金属材料与工程, 2015, 44(S1), 270.
[41] Peng M M, Ning X S. Rare Metal Materials and Engineering, 2013, 42(S1), 404(in Chinese).
彭萌萌, 宁晓山. 稀有金属材料与工程, 2013, 42(S1), 404.
[42] Kitayama M, Hirao K, Watari K, et al. Journal of the American Ceramic Society, 2010, 84(2), 353.
[43] Ziegler A, Idrobo J C, Cinibulk M K, et al. Science, 2004, 306(5702), 1768.
[44] Wang X D, Bai B. Materials Review, 2016, 30(S2), 121(in Chinese).
王旭东, 白彬. 材料导报, 2016, 30(专辑28), 121.
[45] Cinibulk M K, Thomas G, Johnson S M. Journal of the American Ceramic Society, 1992, 75(8), 2037.
[46] Zhong N, Ning X S, Bai B, et al. Rare Metal Materials and Engineering, 2011, 40(S1), 506(in Chinese).
钟楠, 宁晓山, 白冰, 等. 稀有金属材料与工程, 2011, 40(S1), 506.
[47] Yang L L, Xie Z P, Li S, et al. Journal of the Chinese Ceramic Society, 2015, 43(12), 1712(in Chinese).
杨亮亮, 谢志鹏, 李双, 等.硅酸盐学报, 2015, 43(12), 1712.
[48] Zhang J, Ning X S, Lv X, et al. Rare Metal Materials and Engineering, 2008, 37(S1), 693(in Chinese).
张洁, 宁晓山, 吕鑫, 等. 稀有金属材料与工程, 2008, 37(S1), 693.
[49] Teng F, Ning X S, Zhang J, et al. Rare Metal Materials and Enginee-ring, 2009, 38(S2), 153(in Chinese).
滕甫, 宁晓山, 张洁, 等. 稀有金属材料与工程, 2009, 38(S2), 153.
[50] Kusano D, Adachi S, Tanabe G, et al. International Journal of Applied Ceramic Technology, 2012, 9(2), 229.
[51] Go S, Li Y S, Ko J W. Advances in Materials Science and Engineering, 2018,4, 1.
[52] Yang C P, Feng Y, Jie M, et al. Ceramics International, 2018, 44(18), 23202.
[53] Hu F, Zhao L, Xie Z P. Journal of Ceramic Science and Technology, 2016, 7(4), 423.
[54] Li Y, Kim H N, Wu H, et al. Journal of the American Ceramic Society, 2018, 101, 4128.
[55] Lee H M, Lee E B, Kim D L, et al. Ceramics International, 2016, 42(15), 17466.
[56] Clegg W J. Journal of the American Ceramic Society, 2000, 83(5), 1039.
[57] Zhu S, Fahrenholtz W G, Hilmas G E, et al. Journal of the American Ceramic Society, 2007, 90(11), 3660.
[58] Lee H, Speyer R F. Journal of the American Ceramic Society, 2003, 86(9), 1468.
[59] Kurokawa Y, Utsumi K, Takamizawa H. Journal of the American Ceramic Society, 1988,71, 588.
[60] Ekelund M, Forslund B. Journal of the American Ceramic Society, 1992,75, 532.
[61] He Y, Li X, Zhang J, et al. Journal of the European Ceramic Society, 2018,38, 501.
[62] Hirosaki N, Okamoto Y, Ando M, et al. Journal of the American Ceramic Society, 1996,79, 2878.
[63] Watari K, Hirao K, Brito M E, et al. Journal of Materials Research, 1999,14, 1538.
[64] Kim H D, Han B D, Park D S, et al. Journal of the American Ceramic Society, 2002,85, 245.
[65] Li Y, Kim H N, Wu H, et al. Journal of the European Ceramic Society, 2017, 37(15), 4483.
[66] Li Y, Kim H N, Wu H, et al. 2019,39, 157.
[67] Miyazaki H, Hirao K, Yoshizawa Y. Journal of the European Ceramic Society, 2012, 32(12), 3297.
[68] Liang Z H, Peng G H, Li Q Y, et al. Journal of the Chinese Ceramic Society, 2010, 38(10), 1948(in Chinese).
梁振华, 彭桂花, 李庆余, 等. 硅酸盐学报, 2010, 38(10), 1948.
[69] Zhou Y, Ohji T, Hyuga H, et al. International Journal of Applied Ceramic Technology, 2013, 11(5), 872.
[70] Dong W X, Wu S H, Zhang Z L, et al. Rare Metal Materials and Engineering, 2015, 44(S1), 740(in Chinese).
童文欣, 伍尚华, 张志林, 等.稀有金属材料与工程, 2015, 44(S1), 740.
[71] Zhu X W, Sakka Y, Zhou Y, et al. Journal of the European Ceramic Society, 2014, 34(10), 2585.
[72] Li J, Zhu H X, Deng C J, et al. Journal of Wuhan University of Science and Technology, 2012, 35(1), 29(in Chinese).
李君, 祝洪喜, 邓承继, 等.武汉科技大学学报, 2012, 35(1), 29.
[73] Bae B C, Park D S, Kim Y W, et al. Journal of the American Ceramic Society, 2004, 86(6), 1008.
[74] Liang H, Zeng Y, Zuo K, et al. Ceramics International, 2017, 43(7), 5517.
[75] Yang Z, Yu J, Deng K, et al. Materials Letters, 2014, 135, 218.
[76] Zhu X W, Sakka Y, Suzuki T S, et al. Acta Materialia, 2009, 58(1), 146.
[77] Li S Q, Wu C Y, Sassa K, et al. Materials Science Engineering A, 2006, 422, 227.
[78] Uchikoshi T, Suzuki T S, Sakka Y. Journal of Materials Science, 2006, 41, 8074.
[79] Li S Q, Sassa K, Asai S. Materials Letters, 2005, 59, 153.
[80] Cao Z, Sassa K, Asai S. Journal of the European Ceramic Society, 2007, 27(7), 2591.
[81] Fei W D. Solid state physics, Harbin Institute of Technology Press, China, 2014.
费维栋. 固体物理学, 哈尔滨工业大学出版社, 2014.
[82] Yang Z G, Yu J B, Li C J, et al. Chinese Journal of Materials Research, 2015, 29(5), 371(in Chinese).
杨治刚, 余建波, 李传军, 等.材料研究学报, 2015, 29(5), 371.
[83] Xie Y Z, Peng C Q, Wang X F, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(7), 1846(in Chinese).
谢雨洲, 彭超群, 王小锋, 等. 中国有色金属学报, 2015, 25(7), 1846.
[84] Zou J K, Tang Y F, Wang Z X, et al. China Ceramics, 2014, 50(12), 19(in Chinese).
邹建琨, 汤玉斐, 王振骁, 等. 中国陶瓷, 2014, 50(12), 19.
[85] Zhou J M, Wang Y D, Wang S X, et al. Bulletin of the Chinese Ceramic Society, 2010, 29(5), 1114(in Chinese).
周建民, 王亚东, 王双喜, 等. 硅酸盐通报, 2010, 29(5), 1114.
[86] Song Z Y, Dong G X, Yang Z M, et al. Materials Review A:Review Papers, 2009, 23(5), 43(in Chinese).
宋占永, 董桂霞, 杨志民, 等. 材料导报:综述篇, 2009, 23(5), 43.
[87] Bi Y H, Li J, Chen F, et al. Materials Review, 2007,21(12), 24(in Chinese).
毕玉惠, 李君, 陈斐, 等. 材料导报, 2007,21(12), 24.
[88] Otsuka K, Ohsawa Y, Yamadak K. YogyoKyokai Shi, 1986, 94(3), 351.
[89] Chou Y T, Ko Y T, Yan M F. Journal of the American Ceramic Society, 1987, 70(10), 280.
[90] Gao L, Sun J, Liu Y Q. Nano powder and surface modification, Chemical Industry Press, China, 2004(in Chinese).
高濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性,化学工业出版社, 2004.
[91] Duan Y, Zhang J, Li X, et al. International Journal of Applied Ceramic Technology, DOI: 10.1111/ijac.12679.
[92] Zhang J, Duan Y, Li X, et al. Journal of Ceramic Science and Technology, 2017, 8 (1), 149.
[93] Zhang J X, Duan Y S, Jiang D L, et al. Vacuum Electronics, 2016(5), 7(in Chinese).
张景贤, 段于森, 江东亮, 等.真空电子技术, 2016(5), 7.
[94] Zhou Y, Hyuga H, Dai K, et al. Journal of the American Ceramic Society, DOI:10.1111/jace.16015.
[1] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[2] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[3] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[4] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[5] 王涛, 李金辉, 赵雅绪, 朱良, 张少霞, 张国平, 孙蓉, 汪正平. 光敏聚苯并噁唑的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19183-19189.
[6] 李颖, 李成功, 后振中, 张亮, 杨庆浩, 刘心怡. 本征型导热液晶聚合物的制备及导热模型构建:一种提升聚合物基体热导率的方法[J]. 材料导报, 2020, 34(10): 10192-10196.
[7] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[8] 刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
[9] 郭乐扬. 氮化硅陶瓷的连接工艺以及钎料研究进展[J]. 材料导报, 2019, 33(Z2): 198-201.
[10] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[11] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[12] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[13] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[14] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[15] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed