Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7155-7161    https://doi.org/10.11896/cldb.20010137
  金属与金属基复合材料 |
纳米高强钢铁材料增塑研究进展
石玉1, 李正宁2, 盛捷1, 喇培清1
1 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室, 兰州 730050
2 兰州交通大学材料科学与工程学院,兰州 730070
Progress of High Strength and Enhanced Plasticity Steels with Nanosrtucture
SHI Yu1, LI Zhengning2, SHENG Jie1, LA Peiqing1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 3592KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢铁是制造业以及结构应用的主要材料,这很大程度上是因为它们拥有良好的强度与塑性,且价格低廉。材料工程界一直在不停研究更优越的强度和塑性相结合的材料。具有纳米晶/超细晶结构的纳米钢铁材料显示出优异的力学性能,例如卓越的硬度和强度,作为高强钢应用非常有吸引力。然而,超强纳米钢铁材料通常在环境温度下具有低塑性,这极大地限制了它们的应用。由于晶粒细化方法提高强度受到塑性的限制,新的高强度水平下增强塑性的方法成为钢铁材料高性能化的研究热点。为了提高超细晶/纳米晶钢铁材料的塑性,考虑通过调整微观组织结构来提高其加工硬化能力。通过对已经报道的同时具有高强度和良好塑性的纳米结构钢铁材料的实验数据、组织结构的归纳,总结了优化纳米高强钢铁材料塑性的三种基本方法:纳米第二相、微纳复合结构和多相不均匀复合结构。这些增塑方法的主要机理是利用组织结构的改变提高超细晶金属的加工硬化能力以维持其良好的均匀塑性变形,以及利用组织相变提高金属的塑性。这些不均匀纳米结构类似于复合物,具有共同的材料设计和力学原理。本文归纳了钢铁材料常用的强化方法,综述了纳米/超细晶高强钢铁材料提高塑性的方法,尤其是通过突出介绍一些新颖的纳米结构设计来实现钢铁材料的高强高塑,总结了高强高塑纳米钢铁材料的变形机制,以期为纳米晶金属增强塑性研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石玉
李正宁
盛捷
喇培清
关键词:  钢铁材料  强度  塑性  纳米晶/超细晶    
Abstract: Steels have been widely used in manufacturing industries and structural applications because of their high strength, good plasticity and low cost. A superior strength-plasticity synergy of steels has been pursued by material engineers and scientists. Nano/ultrafine-structured steels show excellent mechanical properties, such as excellent hardness and strength, which are attractive as a high-strength steel. However, ultra-high strength steels with nano/ultrafine-grained structure usually have low plasticity at ambient temperature, which restrict their wide applications in many critical areas. Because grain refining results in low ductility of steels at high strength level, it has been a hot topic to develop new means for enhancing plasticity. In order to improve the plasticity of nano/ultrafine grained steels, it is considered to improve the strain hardening ability by tailoring the microstructure. In recent years, many nanostructured steels with high strength and good plasticity have been reported. By summarizing the experimental data and microstructure characteristic of these reported high-strength nano-structured steels, it is concluded that the basic approaches for si-multaneously optimizing the strength and ductility, such as second-phase nano-precipitate, micro/nanocrystalline composite structure, and multiple phase heterogeneous structure. The mechanism of these methods is to improve the strain harding ability of nano/ultrafine grained steels by tuning the structure, so as to maintain uniform plastic deformation or improve the plasticity by phase transformation. These heterogeneous nanostructures are similar to composites, and share common material design and mechanical principles. This review introduces the commonly used strengthening methods for steels. This artical also summarizes the methods for improving the plasti-city of nano/ultra-fine grained high-strength steels, especially by highlighting some novel nanostructured designs to achieve high-strength and high-plasticity of these steels, and discusses the deformation mechanism of these high performance steels. It is expected to provide inspiration for research on enhancing plasticity of the nano/ultra-fine grained high-strength steels.
Key words:  steel    strength    plasticity    nano/ultra-fine grain
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TG142  
基金资助: 国家自然科学基金项目(51561020;51911530119)
作者简介:  石玉,2007年6月毕业于辽宁石油化工大学,获得工学硕士学位。现为兰州理工大学材料学院博士研究生,在喇培清教授的指导下进行研究。目前主要研究领域为高性能金属材料制备与强韧化机制。
喇培清,2002年7月在兰州化物所获理学博士学位。2004年英国牛津大学材料系访问学者。2005年6月起作为甘肃省高层次引进人才到兰州理工大学有色金属新材料国家重点实验室工作,同年被评为研究员,2008年被评为博士研究生导师, 2010年新加坡南洋理工大学访问教授。
引用本文:    
石玉, 李正宁, 盛捷, 喇培清. 纳米高强钢铁材料增塑研究进展[J]. 材料导报, 2021, 35(7): 7155-7161.
SHI Yu, LI Zhengning, SHENG Jie, LA Peiqing. Progress of High Strength and Enhanced Plasticity Steels with Nanosrtucture. Materials Reports, 2021, 35(7): 7155-7161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010137  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7155
1 Dong H, Lian X T, Hu C D, et al. Acta Metallurgica Sinica, 2020, 56(4), 558(in Chinese).
董瀚, 廉心桐, 胡春东, 等. 金属学报, 2020, 56(4), 558.
2 Luo H W, Shen G H. Acta Metallurgica Sinica, 2020, 56(4), 494(in Chinese).
罗海文, 沈国慧. 金属学报,2020, 56(4),494.
3 Gan Y, Dong H. China Metallurgy, 2004, 81(8), 1(in Chinese).
干勇, 董瀚. 中国冶金,2004, 81(8), 1.
4 Ovid'Ko I A, Valiev R Z, Zhu Y T. Progress in Materials Science, 2018, 94, 462.
5 Ma E, Zhu T. Materials Today, 2017, 20, 323.
6 Koch C C. Nanostructured materials: processing, properties, and applications, 2nd Ed, William Andrew Publishing, USA, 2006.
7 Jiao Z B, Liu J C. Materials China, 2011, 30(12), 6(in Chinese).
焦增宝,刘锦川.中国材料进展, 2011, 30(12), 6.
8 Zeng X J. Study on thermal treatment parameters and properties of bimo-dal structured 304 stainless steel. Master's Thesis, South China University of Technology, China, 2014(in Chinese).
曾小军. 双尺度结构304不锈钢的热处理工艺及性能研究. 硕士学位论文, 华南理工大学,2014.
9 Zhao Z Y, Li Z, Liu T Q, et al. Engineering Science, 2003, 5(9), 39(in Chinese).
赵振业, 李志, 刘天琦, 等. 中国工程科学, 2003, 5(9), 39.
10 Bregliozzi G, DiSchinob A, Ahmeda S I U, et al. Wear, 2005, 258, 503.
11 Jia D, Wang Y M, Ma E, et al. Applied Physics Letters, 2001, 79, 611.
12 Kim H S, Estrin Y. Applied Physics Letters, 2001, 79, 4115.
13 Koch C C. Journal of Metastable and Nanocrystalline Materials, 2003, 18,9.
14 Zhu Y, Liao X Z. Nature Materials, 2004, 3, 351.
15 Valiev R Z, Zhilyaev A P, Langdon T G. Bulk nanostructured materials: fundamentals and applications, John Wiley & Sons, 2013.
16 Shuro I. Modelling and Simulation in Materials Science and Engineering, 2012, 556,906.
17 Shakhova I, Dudko V, Belyakov A, et al. Materials Science & Enginee-ring A, 2012, 545,176.
18 Wang Y Q, Zhu G H, Chen Q W, et al. Materials Reports A: Review Papers, 2018, 32(10), 137(in Chinese).
王永强, 朱国辉, 陈其伟, 等. 材料导报:综述篇, 2018, 32(10),137.
19 Kim S H, Kim H, Kim N J. Nature, 2015, 518, 77.
20 Jiang S, Wang H, Wu Y, et al. Nature, 2017, 544(7651), 460.
21 Zheng C S. Micromechanical behavior of ferrite-cementite structures. Ph.D. Thesis,University of Science and Technology Beijing, China, 2015(in Chinese).
郑成思.铁素体/渗碳体复相组织的微观力学行为研究.博士学位论文,北京科技大学, 2015.
22 Liu G, Zhang G J, Jiang F, et al. Nature Materials, 2013, 12, 344.
23 Zhao Y H, Liao X Z, Cheng S, et al. Advanced Materials, 2006, 18, 2280.
24 Song R, Ponge D, Raabe D, et al. Materials Science & Engineering A, 2006, 441, 1.
25 Zhou L, Fang F, Zhou X, et al. Scripta Materialia, 2016, 120, 5.
26 Zheng C, Li L, Yang W, et al. Materials Science & Engineering A, 2014, 617, 31.
27 Wang H D, La P Q, Shi T, et al. Journal of Materials Engineering, 2013(4), 92(in Chinese).
王鸿鼎, 喇培清,师婷,等.材料工程,2013(4), 92.
28 Wang Y M, Chen M W, Zhou F H, et al. Nature, 2002, 41, 912.
29 Weertman J R. Materials Science and Engineering A, 1993, 166, 161.
30 Tellkamp V L, Lavernia E J, Melmed A. Metallurgical & Materials Transactions A, 2001, 32, 2335.
31 Ma E. Scripta Materialia, 2003, 49, 663.
32 Zheng Z J, Liu J W, Gao Y. Materials Science & Engineering A, 2017, 680, 426.
33 Zhang D, Zhang G D, Li Z Q. Materials China, 2010, 29(4), 1(in Chinese).
张荻,张国定,李志强.中国材料进展, 2010, 29(4), 1.
34 Peng H X, Fan Z, Evans J R G. Materials Science & Engineering A, 2001, 303, 37.
35 Rodríguez-Castro R, Wetherhold R C, Kelestemur M H. Materials Science & Engineering A, 2002, 323, 445.
36 Huang L J, Wang S, Dong Y S, et al. Materials Science & Engineering A, 2012, 545, 187.
37 Deville S, Saiz E, Nalla R K, et al. Science, 2006, 311, 515.
38 Inoue J, Nambu S, Ishimoto Y, et al. Scripta Materialia, 2008, 59, 1055.
39 Fang T H, Li W L, Tao N R, et al. Science, 2011, 331, 1587.
40 Wu X L, Yang M X, Yuan F P, et al. Acta Materialia, 2016, 112, 337.
41 Yang M X, Pan Y, Yuan F P, et al. Materials Research Letters, 2016, 4, 145.
42 Wu X L, Yang M X, Yuan F P, et al. Proceedings of the National Academy of Sciences of the USA, 2015, 112, 14501.
43 Xing J X, Yuan F P, Wu X L. Materials Science & Engineering A, 2017, 680, 305.
44 Li J, Cao Y, Gao B, et al. Journal of Materials Science, 2018, 53, 10442.
45 Koyama M, Zhang Z, Wang M, et al. Science, 2017, 355, 1055.
46 He B B, Hu B, Yen H W, et al. Science, 2017, 357, 1029.
47 Ma E. Science, 2004, 305, 623.
48 Cheng Y Q, Chen Z H, Xia W J, et al. Materials Reports, 2006, 20(S2), 245(in Chinese).
程永奇,陈振华,夏伟军,等.材料导报,2006, 20(专辑Ⅶ), 245.
49 Jia D, Wang Y M, Ramesh K T, et al. Applied Physics Letters, 2001, 79, 611.
50 Wang Y M, Ma E. Acta Materialia, 2004, 52, 1699.
51 Lu K. Science, 2014, 345, 1455.
52 Kumar K S, Swygenhoven H V, Suresh S. Acta Materialia, 2003, 51, 5743.
53 Zhao Yonghao, Topping Troy, Bingert John F, et al. Advanced Materials, 2008, 20, 3028.
54 Ramtani S, Dirras G, Bui H Q. Mechanics of Materials, 2010, 42, 522.
55 Jiang L, Ma K, Yang H, et al. JOM, 2014, 66, 898.
56 Ashby M F. Philosophical Magazine, 1970, 21, 399.
57 Ohmori A, Toriziika S, Nagai K. ISIJ International, 2004, 44, 1063.
[1] 王凯伟, 曾凯, 刑保英, 易金权. DP780高强钢胶接点焊过程声发射信号特征及接头强度预测[J]. 材料导报, 2021, 35(6): 6157-6160.
[2] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[3] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[4] 栾玉, 任丹, 徐丹. 横晶层对天然纤维增强聚合物复合材料力学性能影响的研究进展[J]. 材料导报, 2021, 35(5): 5195-5198.
[5] 陈守东, 卢日环, 陈子潘, 孙建, 李杰. 轧制单层晶铜箔滑移启动和应变局部化的晶体塑性模拟[J]. 材料导报, 2021, 35(4): 4170-4176.
[6] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[7] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[8] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[9] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[10] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[11] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[12] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[13] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[14] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[15] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed