Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6206-6211    https://doi.org/10.11896/cldb.19110144
  高分子与聚合物基复合材料 |
动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应
汤琦1, 颜桐桐1, 孙豪1, 王小蕾1,2, 王春芙1, 宗成中1,2
1 青岛科技大学高分子材料科学与工程学院,青岛 266042
2 橡塑材料与工程教育部重点实验室,青岛 266042
Phase Structure and Thermo-electric Effect of Multi-walled Carbon Nanotubes/ Thermoplastic Vulcanizate Composites Prepared by Dynamic Vulcanization
TANG Qi1, YAN Tongtong1, SUN Hao1, WANG Xiaolei1,2, WANG Chunfu1, ZONG Chengzhong1,2
1 School of Materials Science and Engineering, University of Science and Technology Qingdao, Qingdao 266042, China
2 Key Laboratory of Rubber-plastics of Ministry of Education, Qingdao 266042, China
下载:  全 文 ( PDF ) ( 8578KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用动态硫化方法制备了多壁碳纳米管/热塑性硫化胶(MWCNTs/TPV)复合材料,研究了三种动态硫化工艺和MWCNTs用量对MWCNTs/TPV复合材料的相态结构、介电、导热和物理性能的影响。MWCNTs/TPV复合材料呈现“海岛”结构,IIR橡胶相以微米级交联颗粒分散在PP相中。动态硫化工艺主要影响MWCNTs的分布,MWCNTs在两相中均匀分布的MWCNTs/TPV复合材料具有较高的热电性能。当MWCNTs含量达到渗流阈值(3%(质量分数,下同))时,形成MWCNTs网络结构,MWCNTs/TPV复合材料的交流电导率、介电常数和热导率急剧增加。随着MWCNTs含量的增加,MWCNTs/TPV复合材料的弹性模量逐渐增大,拉伸强度先增大后减小;MWCNTs能够提高TPV基体的界面结合力,与纯TPV相比,当MWCNTs的含量为3%时,MWCNTs/TPV复合材料的拉伸强度提高39%。基于MWCNTs/TPV复合材料的相态结构以及MWCNTs的渗流阈值提出MWCNTs网络结构,分散在PP基体中和两相界面处的MWCNTs相互搭接形成MWCNTs网络结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤琦
颜桐桐
孙豪
王小蕾
王春芙
宗成中
关键词:  多壁碳纳米管(MWCNTs)  热塑性硫化胶(TPV)  动态硫化  相态结构  介电性能  导热性能    
Abstract: MWCNTs/TPV composites were prepared by dynamic vulcanization method, the effect of three different dynamic vulcanization processes and the content of MWCNTs on the phase structure, dielectric properties, thermal conductivity and physical properties of MWCNTs/TPV composites were investigated. The MWCNTs/TPV composites exhibited “island” structure, and the IIR crosslinked particles are dispersed in the PP matrix in a micron state. The dynamic vulcanization process mainly affected the distribution of MWCNTs. The MWCNTs/TPV composites with uniform distribution of MWCNTs in two phases had higher thermo-electric properties. When the MWCNTs content reached the percolation threshold (3wt%), the network structure of MWCNTs was formed, and the AC conductivity, dielectric constant and thermal conductivity of MWCNTs/TPV composites increased sharply. With the increase of MWCNTs, the elastic modulus of MWCNTs/TPV composites increased gradually, and the tensile strength increased first and then decreased. MWCNTs could improve the interfacial adhesion of TPV matrix. Compared with pure TPV, when the content of MWCNTs was 3wt%, the tensile strength of MWCNTs/TPV composites was increased by 39%. Based on the phase structure of MWCNTs/TPV composites and the percolation threshold of MWCNTs, the network structure of MWCNTs was proposed. The MWCNTs mainly overlaped with the MWCNTs at the PP matrix and the interface between the rubber-plastic phase to form a MWCNTs network.
Key words:  multi-walled carbon nanotubes (MWCNTs)    thermoplastic vulcanizate (TPV)    dynamic vulcanization    phase structure    dielectric properties    thermal conductivity
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TQ334  
基金资助: 山东省自然科学基金(ZR2016XJ002)
通讯作者:  qdzcz@qust.edu.cn   
作者简介:  汤琦,青岛科技大学博士研究生,主要研究方向为热塑性硫化胶的功能化以及改性。
宗成中,青岛科技大学教授,博士研究生导师,1999年获北京化工大学材料学专业博士学位。现任青岛科技大学高分子材料科学与工程学院院长,长期从事高分子材料学科的教学和科研及管理工作,被评为山东省高分子材料学科关键岗位学术带头人,青岛市政协委员。主要研究方向为:高分子材料的合成、结构与性能,功能高分子材料及分子化学工程。主持国家863计划项目、国家自然科学基金项目、教育部和山东省计划项目以及企业合作项目多项。在国内外专业期刊和学术会议上已发表论文100余篇,申请发明专利20余项。
引用本文:    
汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
TANG Qi, YAN Tongtong, SUN Hao, WANG Xiaolei, WANG Chunfu, ZONG Chengzhong. Phase Structure and Thermo-electric Effect of Multi-walled Carbon Nanotubes/ Thermoplastic Vulcanizate Composites Prepared by Dynamic Vulcanization. Materials Reports, 2021, 35(6): 6206-6211.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110144  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6206
1 Kalkornsurapranee E, Vennemann N, Claudia Kummerlowe C K, et al. Iranian Polymer Journal,2012,21(10),689.
2 Wu D F, Lv Q L, Feng S H, et al. Carbon,2015,95,380.
3 Ma L F, Bao R Y, Dou R, et al. Composites Science and Technology,2016,128,176.
4 Yoshihiko K, Yoshikawa H, Kunio A, et al. Langmuir,2008,24(2),547.
5 Yang D, Zhang L Q, Liu H L, et al. Journal of Applied Polymer Science,2012(3),125,2196.
6 Khodabandelou M, Aghjeh M K. Polymer Bulletin,2016,73(6),1067.
7 Chang Y, Pei J Y, Zhou S S, et al. Materials Reports A: Review Papers,2017,31(10),84(in Chinese).
常艺,裴久阳,周苏生,等.材料导报:综述篇,2017,31(10),84.
8 Tian H C, Tian M, Liu L P, et al. Acta Materiae Compositae Sinica,2004,21(5),35(in Chinese).
田洪池,田明,刘莉萍,等.复合材料学报,2004,21(5),35.
9 Ning N Y, Hu L J, Yao P J, et al. Journal of Applied Polymer Science,2016,133,43043.
10 Liao F S, Su A C, Hsu T C. Polymer,1994,35(12),2579.
11 Shi Y Y, Yang J H, Huang T, et al. Composites, Part B,2013,55,463.
12 Lattimer R P, Kinsey R A, Layer R W, et al. Rubber Chemistry and Technology,1989,62(1),107.
13 Matchawet S, Kaesaman A, Bomlai P, et al. Journal of Composite Mate-rials,2015,50(16),5596.
14 Xiao X D, Zhong Z, Weng G J. Mechanics of Materials,2017,109,42.
15 Salaeh S. Processing of natural rubber composites and blends: relation between structure and properties. Ph.D. Thesis, University Claude Bernard-Lyon I, France,2014.
16 Dou R, Shao Y, Li S L, et al. Polymer,2016,83,34.
17 Zhang R, Bin Y X, Tang P, et al. Polymer Materials Science and Engineering,2016,32(11),45(in Chinese).
张荣,宾月珍,唐萍,等.高分子材料科学与工程,2016,32(11),45.
18 Liu S T, Tian M, Zhang L Q, et al. Journal of Materials Science,2016,51(5),2616.
19 Tian M, Yan B Y, Yao Y, et al. Journal of Materials Chemistry C,2014,2,8388.
20 Oderkerk J, Schaetzen G D, Goderis B, et al. Macromolecules,2002,35(17),6623.
21 Huy T A, Luepke T, Radusch H J. Journal of Applied Polymer Science,2001,80(2),148.
[1] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[2] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[3] 王志勇, 夏奇, 李波. ZnO掺杂对钙硼硅系玻璃陶瓷微观结构与性能的影响[J]. 材料导报, 2021, 35(12): 12049-12052.
[4] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[5] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[6] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[7] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[8] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[9] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[10] 杨小波, 吕毅, 王华栋, 张冰清, 应国兵. 尖晶石固化磷酸铝基复合材料的制备与性能[J]. 材料导报, 2019, 33(18): 3012-3015.
[11] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[12] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[13] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[14] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[15] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed