Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14198-14203    https://doi.org/10.11896/cldb.19070222
  高分子与聚合物基复合材料 |
电流热退火效应对碳纤维导热性能的影响
林欢, 寇爱静, 张建伦, 董华
青岛理工大学环境与市政工程学院, 青岛 266033
Effect of Current Thermal Annealing on Thermal Conductivity of Carbon Fibers
LIN Huan, KOU Aijing, ZHANG Jianlun, DONG Hua
School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
下载:  全 文 ( PDF ) ( 4160KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 利用瞬态电热技术(TET)和电流热退火对聚丙烯腈基碳纤维(PAN-CF)进行原位测量,基于数值模拟方法分析实验现象。研究了退火温度对PAN-CF导热性能的影响,分析了电流热退火条件下PAN-CF的石墨化与导热性能之间的关系。在PAN-CF的退火区域,导热系数随退火温度的升高而增大,最高平均导热系数为16.27 W/(m·K),是原始平均导热系数的3.45倍。电流退火存在沿纤维轴向温度分布不均匀的现象,样品在大约中点位置燃断。燃断点的温度和导热系数最大,分别为3 867 K和96.74 W/(m·K)。其中,断点导热系数比样品的平均导热系数高出6.51倍。研究表明,经电流退火后PAN-CF的石墨化程度升高,C原子的杂化效应促使材料结构缺陷密度降低,最终导致PAN-CF的导热性能提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林欢
寇爱静
张建伦
董华
关键词:  聚丙烯腈基碳纤维(PAN-CF)  电流诱导的热退火  导热性能  石墨化    
Abstract: The polyacrylonitrile based carbon fiber (PAN-CF) was measured by transient electrothermal technology (TET), and the experimental phenomena were analyzed based on numerical simulation method to explore the effect of annealing temperature on thermal conductivity of PAN-CF. The relationship between graphitization and thermal conductivity of PAN-CF under current thermal annealing was analyzed. The thermal conductivity increases with the increases of annealing temperature. The highest average thermal conductivity is 16.27 W/(m·K). Ultimately, the average thermal conductivity of PAN-CF increases by 3.45 times. The temperature distribution along axial direction of fiber is not uniform in current annealing process. PAN-CF sample is broken at midpoint, and the temperature and thermal conductivity of sample breakpoint are maximum, which are 3 867 K and 96.74 W/(m·K) respectively. The thermal conductivity of sample breakpoint is 6.51 times higher than the average thermal conductivity under the same annealing current. The degree of graphitization of PAN-CF increases after current annealing, and the hybridization effect of carbon atoms reduces defect density of PAN-CF microstructure. Therefore, the thermal conductivity of PAN-CF increases after current annealing process.
Key words:  polyacrylonitrile based carbon fiber (PAN-CF)    current-induced thermal annealing    thermal conductivity    graphitization
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TB383  
基金资助: 中国博士后科学基金(2017M612225);国家自然科学基金(51506106);青岛市青年专项基金(18-2-2-72-jch)
作者简介:  林欢,青岛理工大学,副教授。2014年1月毕业于中国海洋大学,获港口、海岸及近海工程博士学位。同年加入青岛理工大学环境与市政工程学院微纳米热科学实验室工作至今,主要研究方向包括:低维度纳米材料导热性能测量和机理研究,以及微纳米尺度光热测量新技术的开发和应用。目前已发表SCI期刊文章13余篇。
引用本文:    
林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
LIN Huan, KOU Aijing, ZHANG Jianlun, DONG Hua. Effect of Current Thermal Annealing on Thermal Conductivity of Carbon Fibers. Materials Reports, 2020, 34(14): 14198-14203.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070222  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14198
1 Zhang X Y, Lv H Y. Science & Technology Vision, 2018(12),143(in Chinese).
张新雨, 吕鸿雁. 科技视界, 2018(12),143.
2 Zhang J K, Xv L, Shi W. Fiber Reinforced Plastics/Composites, 2017(7), 88(in Chinese).
张建科, 许磊, 石伟. 玻璃钢/复合材料, 2017(7), 88.
3 Yv L W, Cao W Y. New Chemical Materials, 2016, 44(8), 4(in Chinese).
于礼玮,曹维宇. 化工新型材料, 2016,44(8), 4.
4 Tong Y. China Plastics Industry, 2018, 46(7),129(in Chinese).
佟颖. 塑料工业, 2018, 46(7), 129.
5 Wang B, Li R. Science & Technology Review, 2018, 36(19), 64(in Chinese).
王彬, 李荣. 科技导报, 2018, 36(19),64.
6 Zhou H X, Gu L E, Shang W L, et al. Textile Reports, 2015, 386(11), 72(in Chinese).
周恒香, 顾良娥, 尚武林, 等. 纺织报告,2015,386(11), 72.
7 Feng Hao, Zheng Xiuting, Wu Daming, et al. Plastics, 2017, 46(6), 7(in Chinese).
冯浩, 郑秀婷, 吴大鸣, 等. 塑料, 2017,46(6), 7.
8 Ren R, Huangfu H J, Cao C X, et al. Applied Chemical Industry, 2018, 47(10), 2254(in Chinese).
任蕊, 皇甫慧君, 曹晨茜, 等. 应用化工, 2018, 47(10), 2254.
9 Hu L X, Li Z P, Tang Q, et al. Speciality Petrochemicals, 2017, 34(6), 79(in Chinese).
胡立新, 李志鹏, 唐强, 等. 精细石油化工, 2017, 34(6), 79.
10 Zhang R, Shi W C. Automobile Applied Technology, 2017, 13(13), 74(in Chinese).
张瑞, 施伟辰. 汽车实用技术, 2017, 13(13), 74.
11 Du X Q,Liu Z L. Material and Adminicle, 2018(4), 91(in Chinese).
杜向琴, 刘志龙. 原材料及辅助物料, 2018(4), 91.
12 Wang Y M. Urban Roads Bridges & Flood Control, 2018(7), 222(in Chinese).
王一明. 城市道桥与防洪, 2018(7), 222.
13 Mayhew Eric, Prakash Vikas. Carbon, 2013, 12(62), 493.
14 Li J, Li X, Liu Y M, et al. Journal of South China University of Tech-nology (Natural Science Edition), 2017, 45(9), 128(in Chinese).
李静, 李雪, 刘业明, 等. 华南理工大学学报(自然科学版), 2017, 45(9), 128.
15 Xia X, Mei Q L, Wang C, et al. Fiber Reinforced Plastics/Composites, 2019(1),11(in Chinese).
夏雪, 梅启林, 王聪, 等. 玻璃钢/复合材料, 2019(1), 11.
16 Chen S C, Feng Y Y. Qin M M, et al. Carbon, 2017, 116, 84.
17 Kimiyoshi Naito, Yang J M, Xu Y B, et al. Carbon, 2010, 48(6), 1849.
18 Xin G Q, Sun H T, Hu T, et al. Advanced Materials, 2014, 26, 4521.
19 Yamamoto Go, Shirasu Keiichi, Nozaka Yo, et al. Carbon, 2014, 66, 219.
20 Liu J, Qu W D, Xie Y S, et al. Carbon, 2017, 121, 35.
21 Xie Y S, Wang T Y, Zhu B W, et al. Carbon, 2018, 139, 445.
22 Heremans J, Rahim I, Dresselhaus M S. Physical Review B, 1985, 32(10), 6742.
23 Huang B, Deng H J, Li M, et al. Transactions of Materials and Heat Treatment, 2005, 26(6), 20(in Chinese).
黄斌, 邓海金, 李明, 等. 材料热处理学报, 2005, 26(6), 20.
24 Zhang F Q, Huang B Y, Huang Q Z, et al. Mining and Metallurgical Enginieering, 2000, 20(4), 10(in Chinese).
张福勤, 黄伯云, 黄启忠, 等. 矿冶工程, 2000, 20(4), 10.
25 He Hu. Carbon fiber and graphite fiber, Chemical Industry Press, China, 2010(in Chinese).
贺福. 碳纤维及石墨纤维, 化学工业出版社, 2010.
26 王浩静,刘颖,周立公,等.中国专利, CN 1170020C, 2003-2-6.
27 Michael J R. patent, US 3656904, 1972-04-18.
28 Charles M C. patent, US 3900556. 1975-08-19
29 Shen Y F, Guo X N, Zhang K, et al. Acta Aeron Autica Et Astron Autica Sinica, 1998, 19(5), 628(in Chinese).
沈以赴, 郭晓楠, 张坤, 等. 航空学报, 1998, 19(5), 628.
30 Ratts L. Fundamentals of heat and mass transfer, John Wiley & Sons, Inc. America, 2011.
31 Sekii Yasuo, Hayashi Tomonao. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(3),649.
32 Balandin Alexander A. Nature Materials, 2011, 10(8), 569.
33 Zhang W C. Research and measurement of the thermal conduction properties of graphene powder for micro-nano scale. Master's Thesis, Qingdao University of Technology, China, 2016(in Chinese).
张文婵. 微纳石墨烯粉体导热性能的测量与研究. 硕士学位论文, 青岛理工大学, 2016.
34 Inagaki M, Shiraishi M, Nakamizo M, et al. Carbon Techniques, 1991, 5(1), 38(in Chinese).
稻坦道夫, 白石稔,Nakamizo M,等. 炭素技术, 1991, 5(1), 38.
35 Yang X, Zou Y H, Huang Q Z, et al. Journal of Inorganic Materials, 2008, 23(3), 779(in Chinese).
杨鑫, 邹艳红, 黄启中, 等. 无机材料学报, 2008, 23(3), 779.
35 Qiu G W, Liu P, Han J D, et al. Chinese Journal of Power Sources, 2013, 37(2), 246(in Chinese).
邱广伟, 刘平, 韩金铎, 等. 电源技术研究与设计, 2013, 37(2), 246.
37 Gao A J, Jin Y W, Xu L H. Chinese Journal of Materials Research, 2010, 24(2) 149(in Chinese).
高爱君, 靳玉伟, 徐樑华. 材料研究学报, 2010, 24(2), 149.
38 Qian C L, Zhou G Z, Huang Q Z. Journal of Central South University of Technology, 2001, 32(3), 285(in Chinese).
钱崇梁, 周桂芝, 黄启忠. 中南工业大学学报, 2001, 32(3), 285.
39 Tong X. Effect of PAN-based carbon fiber structure on graphitization. Master's Thesis, Beijing University of Chemical Technology, China, 2016(in Chinese).
童星. PAN基碳纤维的结构对石墨化的影响. 硕士学位论文, 北京化工大学, 2016.
[1] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[2] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[3] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[4] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[5] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[6] 丁冬海, 杨少雨, 肖国庆. 含碳耐火材料酚醛树脂结合剂的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 95-100.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed