Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 95-100    https://doi.org/10.11896/j.issn.1005-023X.2017.011.013
  材料综述 |
含碳耐火材料酚醛树脂结合剂的研究现状与展望*
丁冬海1,2,3, 杨少雨1, 肖国庆1
1 西安建筑科技大学材料与矿资学院,西安 710055;
2 西安建筑科技大学材料科学与工程博士后流动站,西安 710055;
3 中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,洛阳 471039
Progress in Phenolic Resin Binder for Carbon Containing Refractories
DING Donghai1,2,3 , YANG Shaoyu1, XIAO Guoqing1
1 College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055;
2 Postdoctoral Mobile Research Station of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055;
3 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039
下载:  全 文 ( PDF ) ( 1583KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含碳耐火材料不仅热导率较高,具有较好的抗热冲击性能,而且与熔渣不润湿,具有良好的抗侵蚀性能,因此大量生产并在冶金工业中广泛应用。酚醛树脂因具有与石墨润湿、残碳率高、环境友好、结合强度较高的特点而广泛用作含碳耐火材料结合剂。然而,酚醛树脂热解碳为脆性的非晶结构,不仅在应力作用下易脆性断裂,而且在高温下容易氧化。很多研究致力于酚醛树脂的化学改性。为提高酚醛热解碳的抗氧化性能或力学性能,提高酚醛树脂残碳率,通常添加过渡金属化合物、纳米碳、半导体陶瓷作为催化剂以提高热解碳的有序度,或者在其酚醛树脂热解碳基体中生成具有较高石墨化度的碳纳米管、碳纳米纤维以及SiC纳米线。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁冬海
杨少雨
肖国庆
关键词:  含碳耐火材料  酚醛树脂  结合剂  催化石墨化    
Abstract: Owing to high thermal conductivity for better thermal shock resistance and low wettability with slag to improve corrosion resistance, carbon containing refractories are largely and diversely produced for metallurgical processes. Phenolic resin has been widely used as binder of carbon containing refractories because of compatibility with graphite, high carbon yield, environmental friendliness, high adhesive strength. However, the pyrolytic carbon derived from phenolic resin shows amorphous structure, which is brittle and easy to oxidized at elevated temperature. Many studies focus on chemical modifications of phenolic resin. Aiming to improve the anti-oxidation or/and mechanical properties or to increase yield of phenolic-resin-derived carbon, transition metal compound, nanocarbon and semiconductive ceramic particles are frequently used as catalysts, to generate carbon nanotubes (CNTs) or carbon nanofibers (CNFs) with high degree of graphitization, as well as in-situ synthesis of SiC nanowires in phenolic-resin-derived carbon.
Key words:  carbon containing refractories    phenolic resin    binder    catalytic graphitization
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金(51502236; 51572212);中国博士后基金(2016M602940XB);先进耐火材料国家重点实验室开放课题
通讯作者:  肖国庆:通讯作者,男,1967年生,教授,主要从事耐火材料、陶瓷自蔓延高温合成研究 E-mail:xiaoguoqing@xauat.edu.cn   
作者简介:  丁冬海:男,1983年生,副教授,博士后,主要从事含碳耐火材料、雷达吸波材料研究
引用本文:    
丁冬海, 杨少雨, 肖国庆. 含碳耐火材料酚醛树脂结合剂的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 95-100.
DING Donghai, YANG Shaoyu, XIAO Guoqing. Progress in Phenolic Resin Binder for Carbon Containing Refractories. Materials Reports, 2017, 31(11): 95-100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.013  或          http://www.mater-rep.com/CN/Y2017/V31/I11/95
1 Ewais E M M. Carbon based refractories[J]. J Ceram Soc Jpn,2004,112(10):517.
2 Mahato S, Pratihar S K, Behera S K. Fabrication and properties of MgO-C refractories improved with expanded graphite[J]. Ceram Int,2014,40:16535.
3 Soumya Mukherjee S P, Siddhartha M. A comprehensive review of recent advances in magnesia carbon refractories[J]. Interceram,2014,63(3):90.
4 Krivokorytov C V, Gur′ev A G, Polyak B I. High-carbon binders in refractories and corrosion-resistant ceramic technology[J]. Glass Ceram,1998,55(5-6):144.
5 Jansen H. Bonding of MgO-C bricks by catalytically activated resin [J]. Millennium Steel,2007:95.
6 Bitencourt C S, Luz A P, Pagliosa C, et al. Role of catalytic agents and processing parameters in the graphitization process of a carbon-based refractory binder[J]. Ceram Int,2015,41:13320.
7 Pilato L. Phenolic resins: 100 Years and still going strong[J]. Reactive Funct Polym,2013,73:270.
8 Emmel M. Development of active and reactive carbon bonded filter materials for steel melt filtration[D]. Freiberg: Technische Universität Bergakademie Freiberg,2014.
9 Artmann A, Bianchi O, Soares M R, et al. Rheokinetic investigations on the thermal cure of phenol-formaldehyde novolac resins[J]. Mater Sci Eng C,2010,30(8):1245.
10 Inagaki M, Kang F. Materials science and engineering of carbon fundamentals[M]. Amsterdam: Elsevier,2014:34.
11 Liang F, Li N, Li X K, et al. Effect of the addition of carbon black and carbon nanotubes on the structure and oxidation resistance of pyrolysed phenolic carbons[J]. New Carbon Mater,2012,27(4):283.
12 Wei G P, Zhu B Q, Li X C, et al. Microstructure and mechanical properties of low-carbon MgO-C refractories bonded by an Fe nanosheet-modified phenol resin[J]. Ceram Int,2015,41:1553.
13 Bartha P, Jansen H, Daldrup H G. Carbonaceous refractory shaped body with improved oxidation behavior and batch composition and method for producing the same: US, 6846766[P].2005-01-25.
14 Stamatin I, Morozan A, Dumitru A, et al. The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins[J]. Physica E,2007,37(1-2):44.
15 Zhu B Q, Wei G P, Li X C, et al. Preparation and growth mechanism of carbon nanotubes via catalytic pyrolysis of phenol resin[J]. Mater Res Innovat,2014,18(4):267.
16 Wang J K, Deng X G, Zhang H J, et al. Large-scale preparation of carbon nanotubes via catalytic pyrolysis of phenolic resin at low temperature[J]. Interceram,2015,64(3):86.
17 Hu Q H, Wang X T, Wang Z F. Preparation of graphitic carbon nanofibres by in situ catalytic graphitisation of phenolic resins[J]. Ceram Int,2013,39:8487.
18 Luo M, Li Y W, Sang S B, et al. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3-C refractories with addition of Ni-catalyzed phenolic resin[J]. Mater Sci Eng A,2012,558:533.
19 Fang W, Zhao L, Liang F, et al. Microstructure of a carbon produced from a lignin-modified phenol-formaldehyde resin using a nickel nitrate catalyst[J]. New Carbon Mater,2015,30(4):327.
20 Zhao M, Song H H. Catalytic graphitization of phenolic resin[J]. J Mater Sci Technol,2011, 27(3):266.
21 Zhu B Q, Wei G P, Li X C, et al. Effect of carbonizaiton temperature on microstrcuture and oxidaiton resistance of carbon derived from doping modified phenol resin[J]. J Chin Ceram Soc,2014, 42(6):773(in Chinese).
朱伯铨,魏国平,李享成,等. 炭化温度对掺杂改性树脂炭结构及其抗氧化性能的影响[J]. 硅酸盐学报,2014,42(6):773.
22 Huang G R, Liu H B, Yang L, et al. Pyrolysis behavior of graphene/phenolic resin composites[J]. New Carbon Mater,2015,30(5):412(in Chinese).
黄桂荣,刘洪波,杨丽,等. 石墨烯/酚醛树脂纳米复合材料的热解行为[J]. 新型碳材料,2015, 30(5):412.
23 Wu X X, Li H X, Liu G Q, et al. Effect of KCl on growth of carbon fibres during carbonization of phenolic resin[J]. Refractories,2015,49(1):1(in Chinese).
吴小贤,李红霞,刘国齐,等. KCl对酚醛树脂炭化生长碳纤维的影响[J]. 耐火材料,2015,49(1):1.
24 Aneziris C G, Hubalkova J, Barabas R. Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions[J]. J Eur Ceram Soc,2007,27:73.
25 Wang J G, Guo Q G, Liu L, et al. Study on the microstructural evolution of high temperature adhesives for graphite bonding [J]. Carbon,2002,40(13):2447.
26 Zhang S, Yamaguch A. Effects of B4C on the crystallization and oxidation resistance of carbon from resin[J]. J Ceram Soc Jpn,1994,102:830.
27 Wang X, Zhu B Q, Li X C, et al. Effect of metal co-doping on microstructure and oxidation resistance of carbon derived from phenol resin[J]. J Chin Ceram Soc,2015,43(3):316(in Chinese).
汪贤,朱伯铨,李享成,等. 金属共掺杂对树脂炭结构及抗氧化性能的影响[J]. 硅酸盐学报,2015,43(3):316.
28 Stein V, Aneziris C G, Gueguen E. New approach for the application of functional ceramic material in carbon bonded doloma refractories to reduce emissions[J]. Adv Eng Mater,2011,13(12):1135.
29 Stein V, Aneziris C G. A prospective way to reduce emissions in se-condary steel making metallurgy by application of functionalized doloma carbon refractories[J]. Int J Appl Ceram Technol,2012,9(3):615.
30 Stein V, Aneziris C G. Low-carbon carbon-bonded alumina refractories for functional components in steel technology[J]. J Ceram Sci Technol,2014,5(2):115.
31 Zhu T B, Li Y W, Sang S B, et al. Formation of nanocarbon structures in MgO-C refractories matrix: Influence of Al and Si additives[J]. Ceram Int,2016,42:18833.
32 Bitencourt C S, Luz A P, Pagliosab C, et al. Phase and microstructural evolution based on Al, Si and TiO2 reactions with a MgO-C resin-bonded refractory[J]. Ceram Int,2016,42(15):16480.
33 Wang F C, Zhao L, Fang W, et al. Synthesis and characterization of silicon carbide nanowires from lignin-phenolic resin and silicon powder with an in-situ formed molten salt as catalyst[J]. New Carbon Mater,2015,30(3):222.
34 Wang F C, Zhao L, Fang W, et al. Preparation of organic/inorganic composite phenolic resin and application in Al2O3-C refractories[J]. Int J Appl Ceram Technol,2016,13(1):133.
35 Xu P J, Jiang X L. High carbon yield thermoset resin based on phenolic resin, hyperbranched polyborate, and paraformaldehyde[J]. Polym Adv Technol,2010,22(12):2592.
36 Li S, Han Y, Chen F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polym Degradat Stability,2016,124:68.
37 Semchenko G D, Povshuk V V, Brazhnik D A, et al. Creation of a combined liquid phenolfomaldehyde antioxidant-modifier for improving periclase-carbon refractory life[J]. Refract Ind Ceram,2016,56(6):1573.
[1] 卢宇晗, 黄元波, 杨晓琴, 徐开蒙, 刘灿, 张全, 王继大, 郑志锋. 核桃壳液化物合成高邻位热塑性酚醛树脂[J]. 材料导报, 2018, 32(18): 3244-3248.
[2] 莫培程, 吴一, 于文霖, 王吉林, 邹正光, 钟生林, 王鹏. cBN-Ti-Al-Si原位合成PcBN复合材料及其力学性能[J]. 《材料导报》期刊社, 2018, 32(14): 2355-2359.
[3] 徐俊杰, 万隆, 宋冬冬, 王俊沙, 李颖颖, 刘莹莹. Cu含量对铝基结合剂及其金刚石工具性能的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 104-108.
[4] 姜雪,刘锋,雷子萱,吕游,刘育红,井新利. 热熔预浸工艺及热熔热固性树脂的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 94-100.
[5] 文钰斌, 刘新红, 顾强, 陈晓雨, 贾全利, 杨林, 马腾. 不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 109-113.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed