Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18024-18029    https://doi.org/10.11896/cldb.20070057
  无机非金属及其复合材料 |
柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究
苏丽芬1, 常展鹏1, 宁玉盈1, 汪路1, 方雅涵1, 方炳虎2,3, 柯玉超2,3, 杨斌1, 夏茹1, 钱家盛1, 苗蕾4
1 安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥 230601
2 安徽中鼎密封件股份有限公司,宁国 242300
3 安徽省高性能橡胶材料及制品重点实验室,宁国 242300
4 桂林电子科技大学材料科学与工程学院,桂林541004
Flexible Porous Polydimethylsiloxane Supported Nano Copper Sulfide for Efficient Solar Evaporation
SU Lifen1, CHANG Zhanpeng1, NING Yuying1, WANG Lu1, FANG Yahan1, FANG Binghu2,3, KE Yuchao2,3, YANG Bin1, XIA Ru1, QIAN Jiasheng1, MIAO Lei4
1 Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
2 Anhui Zhongding Sealing Parts Co., Ltd., Ningguo 242300, China
3 Anhui Province Key Laboratory of High Performance Rubber Materials & Products, Ningguo 242300, China
4 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 11706KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 界面太阳能蒸发是一种高效、低成本的水净化技术,光热转换材料、微观结构热管理是实现高效太阳能驱动蒸汽产生的关键。聚二甲基硅氧烷(PDMS)是一种环保且结构可灵活设计的柔性硅橡胶,通过填料可有效改善硅橡胶的热导率系数。纳米硫化铜(CuS)在近红外光几乎100%吸收,是一种新型的光热转换材料。本工作以方糖为模板、纳米二氧化硅(SiO2)和铝粉(Al)为填料制备了多孔的SiO2-PDMS/ PDMS-Al双层硅橡胶,分别构建隔热、导热层,通过聚乙烯醇(PVA)将纳米CuS附着于PDMS-Al层作为光热转换材料。这种硅橡胶复合材料不仅提高了光热转换材料的亲水性,太阳光吸收率达到97.3%,在1 kW/m2光照下能获得77.03%的蒸发效率,而且具有良好的循环稳定性。PDMS复合光热材料从微观结构上减少了界面太阳能蒸发过程中的热损失,对推广该技术应用于海水淡化、污水处理等具有重要的意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏丽芬
常展鹏
宁玉盈
汪路
方雅涵
方炳虎
柯玉超
杨斌
夏茹
钱家盛
苗蕾
关键词:  纳米硫化铜  太阳能蒸发  聚二甲基硅氧烷(PDMS)  光热转换  水净化    
Abstract: Interfacial solar evaporation is an efficient and cost-effective technology for water purification. Advanced photothermal conversion materials and micro thermal management are the key factors for efficient solar driven evaporation. The polydimethylsiloxane (PDMS) is an environmentally friendly, free design and flexible rubber, whose thermal conductivity can be improved by combination of different fillers. The nano copper sulfide (CuS) is a novel photothermal conversion material with nearly 100% absorption at near infrared. Here, a double porous layer of SiO2-PDMS/ PDMS-Al is synthesized by the template method with the cube sugar as template, nano silicone (SiO2) and aluminum powder works as the thermal insulating and conductive fillers, respectively. Then the nano CuS is attached on the skeletons of the PDMS-Al layer via the polyvinyl alcohol (PVA) to form the photothermal conversion material. The unique structure of the PDMS composites not only improves the hydrophilicity, but also has excellent absorption as 97.3%. The evaporation efficiency of the PDMS composites under 1 sun (1 kW/m2) is 77.03% with outstan-ding cycling stability. The PDMS photothermal composites reduce the heat loss during the interfacial evaporation process based on the microstructure, which provides a new strategy in seawater desalination and sewage treatment.
Key words:  nano copper sulfide    solar evaporation    polydimethylsiloxane (PDMS)    photothermal conversion    water purification
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  O647  
基金资助: 国家重点研发计划(2017YFB0406204);国家自然科学基金(51973002)
作者简介:  苏丽芬,安徽大学,讲师。2012年6月毕业于中国科学院广州能源研究所,热能工程专业博士学位,同年入职安徽大学化学化工学院材料系工作至今。主要从事材料热传导、能源材料的研究,重点研究太阳能光热材料的热管理。
引用本文:    
苏丽芬, 常展鹏, 宁玉盈, 汪路, 方雅涵, 方炳虎, 柯玉超, 杨斌, 夏茹, 钱家盛, 苗蕾. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
SU Lifen, CHANG Zhanpeng, NING Yuying, WANG Lu, FANG Yahan, FANG Binghu, KE Yuchao, YANG Bin, XIA Ru, QIAN Jiasheng, MIAO Lei. Flexible Porous Polydimethylsiloxane Supported Nano Copper Sulfide for Efficient Solar Evaporation. Materials Reports, 2021, 35(18): 18024-18029.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070057  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18024
1 Li J, Du M, Lv G, et al. Advanced Materials, 2018, 30, 1805159.
2 Ni G, Li G, Boriskina S V, et al. Nature Energy, 2016, 1, 1.
3 Raza A, Lu J Y, Alzaim S, et al. Energies, 2018, 11, 253.
4 Yin Z, Wang H, Jian M, et al. ACS Applied Materials & Interfaces, 2017, 9, 28596.
5 Huo B, Jiang D, Cao X, et al. Carbon, 2019, 142, 13.
6 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29, 1.
7 Zhao F, Zhou X, Shi Y, et al. Nature Nanotechnology, 2018, 13, 489.
8 Li X, Xu W, Tang M, et al. Proceedings of the National Academy of Sciences USA, 2016, 113, 13952.
9 Wu L, Dong Z, Cai Z, et al. Natutre Communication, 2020, 11, 521.
10 Guo A, Ming X, Fu Y, et al. ACS Applied Materials & Interfaces, 2017, 9, 29958.
11 Zhou J, Gu Y, Liu P, et al. Advanced Functional Materials, DOI: 10.1002/adfm.201903255.
12 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12, 841.
13 Li T, Liu H, Zhao X, et al. Advanced Functional Materials, 2018, 28, 1707134.
14 Liu S Q, Wen H R, Guo Y, et al. Nano Energy, 2018, 44, 7.
15 Wu X, Robson M E, Phelps J L, et al. Nano Energy, 2019, 56, 708.
16 Su L, Hu Y, Ma Z, et al. Solar Energy Materials & Solar Cells, 2020, 210, 110484.
17 Gong F, Li H, Wang W, et al. Nano Energy, 2019, 58, 322.
18 Fang J, Liu J, Gu J, et al. Chemical Materials, 2018, 30, 6217.
19 Hong S, Shi Y, Li R, et al. ACS Applied Materials & Interfaces, 2018, 10, 28517.
20 Gu J D, Qiang T T, Xu W T, et al. Journal of Chongqing University of Technology (Natural Science), 2021, 35(6), 122(in Chinese).
谷江东,强涛涛,徐卫涛,等. 重庆理工大学学报(自然科学),2021,35(6),122.
21 Menon A K, Haechler I, Kaur S, et al. Nature Sustainability, 2020, 3, 144.
[1] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[2] 孙诚, 顾佳俊, 章潇慧, 祝弘滨, 刘佰博, 张丽娇, 刘庆雷, 张旺, 张荻. 基于生物精细构型的光催化材料和光热转换材料的研究进展[J]. 材料导报, 2019, 33(21): 3662-3668.
[3] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed